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configuration. lons gyrorotating around and streaming along By lines impact the wall and sputter impurities into the
plasma in 6 coil system. The increased levitation field required to minimise interaction with the 6 coil configurtaion

compression path. Defining the axisymmetric field: B = V¢ x Vo+ V¢ , the rate of change of the Partitioning the energy equation (p = p; + p. = nky(1; + Zess Tt)), and including

/\K\ -, Figure 4: (a) Comparision of By at r=52mm (b) 11 coils on machine ° Fqu-conserVing compression shots generally exhibited more asymmetric system's total energy can be expressed as: charge exchange and other plasma-neutral collisional/reaction terms, as well causes the forming CT to be distorted & to shrink during bubble-in at 7.s. Increasing field further can block entry to the
600 4 - : - ' ' ' ' i " _ confinement area - that was not an issue with 11 coils. Contours of v indicate direction of By, contours of f indicate
500 T4 ST 0 e The setup with 11 coils allowed for formation of higher_ﬂux CTs. current diversion than non qux-conservmg shots, perhaps because the . _ . . 1. s P i o V) 2 f 2 densr[y diffusion (CorreCtlon term Dﬂ“ to maintain energy and momentum con direction of Jy4. f is constant along the insulating part of the boundary, where current is parallel to the wall. Simulation
il 400 - Shot 39640 L . 1l ' _ Uiotal = Uk g+Urg+UpN = / —w+pv-v| 4+ —4+ — | — — ] + (= dV ' Tak run parameters included:
d < 300 - — Formationvaltage_ 4 Z  The absence of gaps outboard of the insulator above and below the latter destabilized _twrough another me.Chamsm . . fotal — TRETHHITEM <2p § ) y—1  2p \ Ot ( r ) <T) servation), we obtain: i 21500 € = 4000, y! = 100, x¢ = 220 [m2/s], no = 3€20, nnli—o = 5¢19 [m=3], D, = 100 [m?2/s
e - - S - - « Several shots with ~1ms of sustained ~90kA capacitor-driven shaft | | Xi ' P XL = XL v fe), me  Toni=0 m Do tm /e,
e - B colls reduced displacement of the levitation field during ©T formation. rrent h lear n-odd fluctuations in B,. Increasing sustained current at Expansion (continuous form): P DT T ool oy a0 ge S ol
100 : - : : : : . - . ' | —1 16k A /coil for 11 coil 31k A /coil f 1 s Imain = TOA, Regpre = T0mS
—g—% : " leading to a reduction of plasmal/insulator interaction and impurities. ggme res:i\c/)?\ 3v?>ald Ii(l)<el sl’:gbl:lei\zlgt r?el kinek g su u m v Ty (SR IXB AT ARE RS I 1) £ D Viorm = 16KV 16kA/col for 11 coil setup, 3114/c0 fo 6 il et ), Tmain = 704, Reate =70m81
;DE;-IR?’[‘:DZ“ t:‘Il:ﬂr’ll‘{ 0 | 2|0 | 4|o | 6|O | slo - ) Even at increased formation VOItage’ total SpeCtraI power was ~4 times " ) ’ U V(X X S dV S ExH VT ' v Vv +( 1)( Vv -V -q; + Qie—Rj, +Q°® — QT 4 (re®qpiony i 2 i pion Qwec) | | gy ; B 01 ume= o1 | ,.,,, ‘ L time = 654 "
Zm . . — N — — pP; = —V - Vp; — YpP; -V Y - L v — - q; ie— R, +Vinp in — &ni i —Uin —Q, — Q) 0.08 - e 1 . 0.08 *.‘“ ] 0.12 0.08 1300
us Iower with 11 CO”S B, - y . total ( ();(ch C-:) + D + (I) ( X, q =nx ) 2 Moy, - — = _ 566 |
. . . . . . y ' ' ' 3 °[Jr26mm on 6 coils ceramic **[Ir26mm on 6 coils ceramic r26mm on 6 coils ceramic - ) iom Me o | Me _iom L l 0.04} - 0.04}
Figqure 1° SMRT schematic ¢ CT I|fet|me was InCreased ~50%, Up tO ~1 90“3, Wlth 11 CO”S It IS o h ?/T:ootn?pi&‘z:;Okv :;g: 4 39 Hégmm on ?1 C(!”S quartz égmm on ?1 Colns quartz 0. Hr%mm on 11 coils quartz E X S d Pe ==V -Vpe —4pe V- v+ (y—1) (7’? JT =V qe = Qietl; T(’U-;.n_ — Pion) + EQH_ ) oozt _ 002} os o 002} 200
Igu | . . . . . Ei O R R e 36 0 i & - 067 _ p— . . . _ - “E‘ ot 20 % 0 % of

’ | | | expected that lifetime would increase to ~360us with a setup with 11 o | W E |, Wlemo 1 041 (Xa(vaXa) +5+4q) -ds pn = =V - (puVn) + Dpn V7o +ma (I =T} ol

A spheromak compact torus (CT) is formed with a magnetized Marshall coils on a quartz-radius ceramic wall. o f o Ll Vo = TV A (T 4T <R 4R T e T v T ) D o > ol . N

gun into a containment region with an hour-glass shaped inner flux i 0 * 02 ol = / (S+q) -ds =I} (Valp = 0) o N ~ N - "

1 1 - 1 E 103 p = —Vp * — " — T VvV — . T v, — QSE o vew “U-2 —qQton Lee B 0.05 0.1 s 0.15 o 0.05 0.1 0.15 0.2 g 0.05 0.1 0.15 -

conserver (the chalice), and an insulating outer wall. The experiment has 25 — o forore T 25 S | olﬂi | ; P = N Ve e Vv £ O ”(—n VVn TV Gt Rin Vie = Qi+ Qi H T i m@n T 4 )

_ _ _ _ sho ! 200 < 26 shot # 39650 1200 z B i e O 02 04 06 08 1 0 50 100 1 15 9 25 — 0 ( (T Z) — ,{/}| — (V f) — 0) Te fev] Ti fev]

eXtema| CO'IS tO keep the CT Off the OUter Wa” (IeV|tat|On) and then rapldly : 52 mag. lifetime: 175 ps =, 39 ro2 mag. lifetime: 187 us X us flux conservation parameter % difference Probe-averaged magnetic compression ratios XAT b L b . . . ' OLF time i — O1F time= 6545 220

compress it inwards 150 2 160 = The code has the option of evolving the neutral fluid as well as the plasma fluid,

. g 52 LGC) . . I l I . . . . . . 0.06 + - 0.06 0.06 4180

Diagnostics Included over 20 probes to measure Be at the CT edge & B<|> 8 1100 § 64 © 1100 3 zigr;:rr:e?r: T(YgiC?I 2%;2?3;qgmrfgzssgg;;h?;x;ha? %oélsz. g?g?);;rsejséiggaalpf;ur;( gf:szeg\:s:;o)n,ai%mrggzsnsei?g An expression for Uotar, 1N tErMs of the d|screte, gnd-based differential opera’[ors or evolvmg only the plasma fluid. If evolvmg the plasma fluid only, some ar- zzz zz: ZZ: =

: : ® 1 O 5 1§ y y (ie. % di | : . rati = : | - : - : - - It ith i I : - ) E ol W E E

(shaft current), and thru-CT- chords for laser interferometers (3), optical = 5 W7 = |, compression ratios, were improved with the 11 coil configuration. All data shown here is from shots with and flelfi& is found using various matrix t_ranspgse identities along with mherent tificial charge exchange can be included by retaining only the neutral-plasma

emission (5), ion doppler (2), spectrometers (2), as well as Xray-phosphor § 90 ‘ %3 compression fired 40-60us after formation, and at V., (14kV). properties of the (_)perators. We u_se the _|dent|t|e:s ’[hE.lt —U oy = qug?gn (ie rate collisional/reactive terms % (—R — I'“*m;v;,) and (y — 1) (_ cr | ch%vgn) in on] | o -

imaging 0 £ Mo =0 T of loss of magnetic energy associated with poloidal field due to resistive decay . . . . . . | "

- - 2 _ _ _ _ _ . . . . the expressions for v and p,. This represents that hot ions that react with neu- . . . . .
levitation/compression coil Era e 250 116 250 » Vastly improved compressional flux conservation with 11 coils may be due of toroidal currents = rate of increase of thermal energy due to Ohmic heating o o os o1 o5 o2 N

300nH

2.5m¢{2 /70m¢{? 6uH

thyratron switch

to the field profile as well as impurity reduction.

by toroidal currents), and —U r1¢4, = Urpey:

trals (constant p,,) ionize and impart half their energy to cold neutrals and leave
the system without reacting again.

Figure 12: Various fields during compression, 11-coil configuration. Input parameters are as displayed below figure
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