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The compression of a cylindrical gas bubble by an imploding molten lead (Pb) shell may be accompanied
by the development of the Richtmyer–Meshkov (RM) instability at the liquid–gas interface due to the ini-
tial imperfection of the interface. A converging pressure wave impinging upon the interface causes a shell
of liquid to detach and continue to travel inwards, compressing the gas bubble. The efficiency of compres-
sion and collapse evolution can be affected by development of the RM instability. Investigations have
been performed in the regime of extreme Atwood number A ¼ �1 with the additional complexity of
modeling liquid cavitation in the working fluid. Simulations have been carried out using the open source
CFD software OpenFOAM on a set of parameters relevant to the prototype compression system under
development at General Fusion Inc. for use as a Magnetized Target Fusion (MTF) driver.

After validating the numerical setup in planar geometry, simulations have been carried out in 2D cylin-
drical geometry for both initially smooth and perturbed interfaces. Where possible, results have been val-
idated against existing theoretical models and very good agreement has been found. While our main
focus is on the effects of initial perturbation amplitude and azimuthal mode number, we also address dif-
ferences between this problem and those usually considered, such as RM instability at an interface
between two gases with a moderate density ratio. One important difference is the formation of narrow
molten lead jets rapidly propagating inwards during the final stages of the collapse. Jet behavior has been
observed for a range of azimuthal mode numbers and perturbation amplitudes.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

When the interface between two fluids of different densities is
subjected to rapid acceleration, e.g. by a shock passing through the
interface, perturbations present at the interface prior to the pas-
sage of the wave grow with time. This phenomenon is known as
the Richtmyer–Meshkov instability (RM) [1,2], and has been exten-
sively studied in the last couple of decades. Research into the ef-
fects of the RM instability has been motivated by its relevance to
astrophysics applications such as core collapse supernovae, and
thermonuclear fusion applications such as inertial confinement fu-
sion (ICF) and, more recently, magnetized target fusion (MTF).

In this paper we study the cylindrical collapse (compression) of
a gas cavity by an imploding liquid shell. We focus on the RM
instability [1,2], which is the first instability to develop on the
liquid–gas interface during collapse. This study is motivated by
the ongoing development of a prototype MTF driver at General
Fusion Inc. [3,4] and primarily aimed to clarify requirements for
the smoothness of the initial liquid–gas interface necessary to
achieve efficient compression. In General Fusion’s design,
deuterium–tritium fuel is supplied as a pair of magnetized plasma
rings, known as compact toroids (CTs). The CTs are delivered to an
evacuated cylindrical cavity inside a steel vessel filled with liquid
lead–lithium eutectic metal and then compressed to thermonu-
clear fusion conditions by a converging pressure wave initiated
by pneumatic pistons. Liquid Pb–17Li is used because it has several
beneficial properties such a low melting point, low vapor pressure,
the ability to breed tritium, a high density, which provides for a
long inertial dwell time, and a good acoustic impedance match to
steel, which is important for maximizing energy transfer from
the steel pistons. An evacuated cylindrical cavity is formed as a re-
sult of vortical flow inside the vessel created by the tangential
pumping of the liquid metal. The acoustic pulse (pressure wave)
is generated mechanically by hundreds of pneumatically-driven
pistons striking the outer surface of the steel vessel. The pressure
wave propagates radially inwards, strengthened by a geometric
convergence factor determined by the specific shape of the vessel,
piston arrangement and timing. As the pressure wave reaches the
liquid–plasma interface, the interface undergoes rapid acceleration
and travels towards the center, compressing the plasma cavity.
Perturbations existing at the liquid–gas interface prior to the pas-
sage of the pressure wave may seed the development of hydrody-
namic instabilities and affect the compression efficiency. In this
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study we consider compression of the cavity filled with gas (air or
argon) instead of magnetized plasma by omitting the effect of the
magnetic field. Magnetic stress only becomes important at the late
stages of the compression and is currently under investigation. The
parameters used in this study, such as size of the cavity, size of the
vessel and pressure wave characteristics have been chosen to
match our prototype device.

The growth characteristics of initially small-amplitude sinusoi-
dal perturbations can be divided into two regimes: (i) the linear re-
gime, in which the contribution of nonlinear effects is negligible
and evolution of the disturbance can be adequately described by
the linearized equations, and (ii) the nonlinear regime, in which
the perturbation growth decreases and finally saturates due to
nonlinear effects. In the linear regime, initial perturbation growth
can be reasonably predicted by the simple impulse models [1,2]
as _h ¼ h0ADU, where h0 is the initial perturbation amplitude, DU
is the difference in the velocity of the interface before and after
the passage of the shock wave, and A is the Atwood number de-
fined as

A ¼ ðq2 � q1Þ=ðq2 þ q1Þ; ð1Þ

where q1 and q2 are the fluid densities.
In literature, a characteristic pattern of RM instability is usually

described in terms of fingers of one fluid penetrating into another.
A finger of light fluid poking into heavy fluid is usually called a
‘bubble’, and that of heavy into light is called a ‘spike’. Bubbles
and spikes grow at the same rate during the linear stage. However
during the nonlinear stage, spikes undergo acceleration whereas
bubbles tend to stagnate. The disparity in growth rates becomes
more prominent at high Atwood numbers (A � 1), see e.g. Dimonte
and Ramaprabhu [5], and in this regime a vast majority of the
existing models perform rather poorly.

Once the passing shock wave and the interface begin to interact,
the evolution of the initially perturbed interface can be explained
in terms of vorticity deposition. If the interface is perturbed, the
pressure gradient of the shock is misaligned with the density gra-
dient across the interface. This results in generation of the baro-
clinic vorticity through the term rq�rp in the vorticity
equation. The sign of the generated vorticity (clockwise or counter
clockwise) depends on the sign of the Atwood number, i.e. whether
the shock travels from light fluid to heavy or vice versa [6,7]. As
such, the initial perturbation may grow monotonically or first de-
crease and then grow in the opposite direction, a phenomenon
known as phase inversion [8,7].

Most of the work to date on the RM instability has been carried
out in rectangular geometry, with fluids modeled as ideal gases,
and at moderate Atwood numbers (jAj � 0:5� 0:8). A lot of effort
was put into understanding the underlying physics, developing
models describing nonlinear stages of disturbance evolution, and
investigating the effects of compressibility, sensitivity to the initial
conditions, and turbulent mixing, e.g. [9,10,6,11,5,12–14]. Re-
cently, there has been an increase in the number of works describ-
ing the RM instability in converging geometries [8,15–19], which
are more relevant to fusion. The situation in converging geometries
is more complex than in the planar case, because the trajectories of
bubbles and spikes are no longer parallel as the interface moves in
the radial direction. The evolution of small- amplitude perturba-
tions in cylindrical geometry was investigated by Mikaelian [18]
for the case of pure azimuthal perturbations. Lombardini [19] ex-
tended the analysis [18] to also account for axial perturbations.

In converging geometries a fair bit of attention is devoted to the
secondary effects, such as so-called ‘reshock’ [8,16,20–22]. In pla-
nar geometry ‘reshock’ has been studied by [11]. In a converging
geometry the transmitted part of the shock travels to the origin,
which acts as a singular point, and then bounces back to hit the
interface again affecting the perturbation growth; this phenome-
non is called ‘reshock’.

One of the aspects of the RM instability that has been given lit-
tle attention until recently is the regime of high Atwood number
(A � �1). This situation occurs when a shock wave passes, for
example, between a liquid and a gas. In this case, at least one of
the fluids cannot be described as an ideal gas and other equations
of state must be considered. If one of the fluids is a liquid and the
shock reflects off the interface, cavitation can occur when the pres-
sure falls below the tensile strength of the liquid, further increasing
the complexity of the problem. A recent numerical study of Ward
and Pullin [23] looks into the role that the equation of state has
on RM instability growth in a planar geometry. An experimental
study by Buttler et al. [24] investigates the RM instability at me-
tal-vacuum interfaces in planar geometry. Their focus was on
developing an ejecta source term model that links to the surface
perturbations of shocked materials. The main assumption of their
model is that ejecta formation at a metal-vacuum interface can
be viewed as a special limiting case of the RM instability.

Our numerical work focuses on the RM instability at a liquid–
gas interface during a heavy-to-light implosion in cylindrical
geometry. In this case, we have liquid Pb surrounding a cylindrical
cavity of air. The pressure pulse originates in the liquid and con-
verges toward the liquid–gas interface. When a shock wave strikes
the interface between two fluids, it is partially transmitted into the
second fluid and partially reflected. The transmission ratio depends
on the acoustic impedance of each fluid, defined as:

z ¼ qc; ð2Þ

where q and c are the density and sound speed of the fluid, respec-
tively. Therefore, the pressure pulse is almost entirely reflected
when it reaches the interface because of the severe mismatch be-
tween the acoustic impedance of liquid Pb and that of air. In this
configuration, the reflected wave is a rarefaction wave that subjects
the liquid to tension, which may cause cavitation.

The rest of this article is organized as follows. The problem
statement, numerical method and validation test are described in
Section 2. The results are presented in Section 3, where pulse prop-
agation in liquid Pb and collapse of the unperturbed cylindrical gas
cavity are discussed in Section 3.1 and results for collapse of the
perturbed interface are given in Section 3.2, which is further sub-
divided into subsections Section 3.2.1, Section 3.2.2 and Sec-
tion 3.2.3 addressing effects of perturbation amplitude, azimuthal
mode and comparison with theoretical models, respectively.
2. Problem statement and validation

2.1. Numerical setup

Simulations are performed using the ‘compressibleInterFoam’
solver, which is part of the open source C++ libraries of OpenFOAM
[25]. OpenFOAM is designed to solve a generic set of partial differ-
ential equations using a finite volume computational method [26].
‘compressibleInterFoam’ is a multiphase solver which uses a VOF
(Volume of Fluid) phase-fraction-based interface-capturing ap-
proach and is suitable for modeling two compressible, isothermal,
immiscible fluids. The momentum and other fluid properties are of
the ‘‘mixture’’, i.e. properties vary according to the volume fraction
of each phase, and a single momentum equation is solved. Govern-
ing equations are listed and discussed in Appendix A, where partic-
ular attention is given to the specific form of the equation
describing evolution of the liquid fraction used in the solver.

The solver employs finite volume discretization on collocated
grids such that the flow variables are cell centered, but their
face-interpolated values are also used in the solution procedure.
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Equations are solved through a segregated approach using the
Pressure Implicit with Splitting of Operators (PISO) [27] procedure
for pressure correction. The settings used in this study ensure a
numerical scheme that is a second-order accurate in space and
first-order accurate in time (implicit Euler).

A barotropic equation of state is used to relate pressure and
density for each phase:

qi ¼ q0i
þ wiP; ð3Þ

where wi ¼ 1=c2
i is the compressibility and ci is the speed of sound

for phase i. For a gas (compressible) phase the nominal density q0 in
Eq. (3) is set to zero. This results in an ideal gas equation of state for
an isothermal fluid. For a liquid (low compressibility phase) q0 is set
to the nominal density of the liquid under normal conditions. As
such the fluid density remains essentially constant unless the liquid
is subjected to very high pressures. Similar results can also be ob-
tained using the Tait [28] equation of state for a liquid phase.

Simulations are carried out in 2D cylindrical geometry. A sche-
matic of the numerical setup is shown in Fig. 1(a). The initial radius
of the gas cavity and initial position of the interface is R0 ¼ 0:2 m.
The outer boundary is at Router ¼ 1:5 m, where a pressure pulse is
imposed as a time-dependent pressure boundary condition PðtÞ
(Fig. 1(b)). The maximum pressure and duration of the pulse are
chosen to reflect the parameters of the prototype device,
Pmax ¼ 1:5 GPa and Tpulse � 100 ls in most simulations. In our pro-
totype system characteristics of the pressure wave transferred into
a molten lead depend on the velocity and design of our pneumatic
pistons. A realistic shape (spatial and temporal) of the pulse is
complex as it involves propagation of the pulse along the piston
and interaction with the surrounding steel. A simplified pulse
shown in Fig. 1(b) has been chosen to reflect a maximum pressure,
expected duration and initial ramp rate of the pulse. It is based on
the results of FEA structural simulations performed with the com-
mercial software LS-DYNA [29]. It should be noted that as the ini-
tial pulse propagates through the molten lead towards the gas
cavity, its shape and amplitude change. The front becomes steeper
and the rear end becomes longer leading to the shortening of the
flat portion; the pulse shape becomes more triangular as it propa-
gates. The peak amplitude of the pulse also undergoes amplifica-
tion because of the converging geometry.
(a)

(b)

Fig. 1. (a) Numerical setup for 2D simulations in a cylindrical geometry. (b) Typical
shape of the pressure pulse imposed on the outer boundary.
A zero-gradient boundary condition is set for the velocity at the
outer boundary allowing some mass influx into the domain. In
most simulations a small central portion of the computational do-
main with radius r < 1 cm has been excluded from the calculations
to speed up the computations. The effect of excluding this central
part was found to be negligible for the purposes of this work. The
inner boundary uses an outflow boundary condition so that gas can
‘escape’ from the domain during the collapse. Both fluids are ini-
tially at rest at atmospheric pressure.

Simulations are carried out for both initially smooth and sinu-
soidally perturbed interfaces. The results for the unperturbed case
are first validated against existing models and then used as a base-
line of comparison for the growth of bubbles and spikes in per-
turbed interface runs. The initial sinusoidal perturbation is
defined by its initial amplitude h0 and azimuthal mode wavenum-
ber n, with a corresponding perturbation wavelength of
k0 ¼ 2pR0=n. The perturbation amplitude can be normalized rela-
tive to its wavelength, h0=k0, as is done in planar geometry, or rel-
ative to the initial radius of the interface h0=R0, which indicates
how much the behavior is affected by the curvature of the
interface.

Simulations with a coarse grid resolution in the radial direction
(r̂) are performed over the full azimuthal domain (Fig. 1(a)), while
finer grid resolution runs are carried out over a restricted azi-
muthal angle hsegment (with periodic boundary conditions in the azi-
muthal direction) to speed up the calculations. The specific choice
of hsegment depends on the azimuthal mode number n of the pertur-
bation used. The number of grid points in the radial direction is
Nr ¼ 2800 and Nr ¼ 11;200 for the coarse and fine resolution runs,
respectively. The grid spacing is uniform for r < R0 with
dr ¼ 2:375� 10�4 m and dr ¼ 5:9375� 10�5 m for the coarse and
fine grids, respectively. The smallest perturbation amplitude used
in these simulations is h0 ¼ 0:001 m. This results in 17 fine grid
points across the initial perturbation in the radial direction. The
number of grid points per perturbation wavelength is set to
Nh ¼ 135 in most simulations, although this is reduced to
Nh ¼ 55 for high azimuthal mode perturbations.

Simulations are performed for an implosion of molten lead Pb into
air with the fluid properties qPb ¼ 10;000 kg=m3; cPb ¼ 2000 m=s;
qair ¼ 1 kg=m3; cair ¼ 316 m=s. Properties of the molten Pb at
400 �C were taken from [30], although a value of sound speed was
rounded from 1800 m/s to 2000 m/s for analytic simplicity. The corre-
sponding acoustic impedances (Eq. (2)) are zPb ¼ 2� 107 Rayl and
zair ¼ 316 Rayl and the Atwood number is A ¼ ðqair � qPbÞ
=ðqair þ qPbÞ ¼ �0:9998 � �1.

Finally, we should note that by using the isothermal fluids
assumption, we do not take into account that some energy of the
pressure pulse is converted into heat as the pulse propagates
through the molten lead. The isothermal assumption is also inaccu-
rate for adequate description of gas pressurization. However, the
gas has very little effect on the molten Pb until the very last stage
of compression, when gas pressure becomes comparable to the
pressure of the liquid shell (deceleration phase), which we do
not concern ourselves about in this study. Both the gas pressure
and magnetic stress provide the mechanism to decelerate the li-
quid shell, but they are beyond scope of this study. Rotation of
the fluid has not been included in this study as well.

2.2. Validation test

The numerical method and grid convergence are first tested in
planar geometry on a set of parameters similar to those used in
cylindrical geometry. The length of the computational domain in
the streamwise direction (x̂, normal to the interface) is Lx ¼ 1:5 m
with the interface located at Xinterface ¼ 1:3 m. A pressure pulse
PðtÞ is prescribed at the inflow boundary at X ¼ 0 and an outflow
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(zero-gradient) boundary condition is used at X ¼ 1:5 m. The initial
pressure pulse amplitude is Pmax ¼ 3:6 GPa which roughly corre-
sponds to the expected pressure at the interface in cylindrical
geometry when the initial pulse amplitude is Pmax ¼ 1:5 GPa and
pressure is amplified due to the convergence. In the normal direc-
tion (ŷ, parallel to the surface of the interface) the length of the
computational domain is one wavelength of a mode n ¼ 6 pertur-
bation of cylindrical geometry, Ly ¼ 2pR0=n ¼ 0:2094395102 m.
Periodic boundary conditions are imposed in the normal direction
and the number of grid points is set to be Ny ¼ 135, corresponding
to the n ¼ 6 case in cylindrical geometry. Simulations are per-
formed for three different grid resolutions in the streamwise direc-
tion. The grid spacing is uniform for 1:3 m 6 X 6 1:5 m and equal
to Dx ¼ 2:375� 10�4; 1:1875� 10�4 and 5:9375� 10�5 m for
grids with increasing resolution. The total number of grid points
in the streamwise direction is correspondingly Nx ¼ 2800;5600
and 11200.

A schematic of the flow pattern in the planar case is shown in
Fig. 2. Part (a) of the figure shows propagation of the pressure pulse
through Pb prior to hitting the interface and part (b) illustrates the
flow pattern some time after the pressure pulse hits the interface.
The pressure pulse gets reflected from the interface as a rarefaction
wave. This puts the liquid Pb into tension and initiates cavitation
behind the interface (Fig. 2(b)).

In planar geometry, an initially smooth interface is expected to
move with constant velocity after interacting with the pressure
pulse. In our case, the interface velocity V interface can be approxi-
mated by assuming two fluids with a very large impedance ratio
(see Section 4.8 and Section 4.9 in [31]), such that,

V interface � 2Vp; ð4Þ

where Vp is the particle velocity given by,

Vp ¼
Pmax � P0

qPbcPb
� Pmax

qPbcPb
: ð5Þ

The maximum pressure Pmax and density qPb of the pulse are taken
just before it hits the interface. The ambient pressure is
P0 ¼ 1� 105 Pa. It should be noted that Eq. (4) is strictly valid for
a shock wave. Our initial ramped pressure pulse steepens during
its propagation and becomes a shock before hitting the interface
(a)

(b)

Fig. 2. Schematic of a test case in planar geometry. (a) Pressure pulse propages
through Pb prior to hitting the Pb–air interface. (b) Some time after the pressure
pulse hits the Pb–air interface. Pb shell is formed and a phase inversion occurs on
the perturbed interface.
(see Fig. 5 at t ¼ 650 ls). As such, we expect our results to be in a
good agreement with Eq. (4).

The evolution of an initially smooth interface after it has been
accelerated by a linearly ramped pressure pulse of infinite length
is shown in Fig. 3 for two different grid resolutions. One can see
that the grid resolution is sufficient to obtain well converged re-
sults. For our parameters, Pmax � 3:6 GPa, qPb � 10;500 kg=m3

(there is a slight increase in Pb density as the pulse propagates
through it due to compressibility) and cPb � 2000 m=s, the
interface velocity predicted by Eq. (4) is V interface ¼ 343 m=s.
The numerically calculated velocity (slope of the curve) is
Uinterface ¼ 344:7 m=s, which deviates from the theoretical value
by less than 0.5%.

An initially perturbed interface is also tested in planar geome-
try. The initial perturbation amplitude is set to h0 ¼ 2 mm
(Fig. 2) and the perturbation wavelength k0 is equal to the length
of the computational domain in the normal direction ŷ leading to
h0=k0 ¼ 9:55� 10�3. In our analysis we follow the extrema points
of the perturbations, marked by points 1 and 2 in Fig. 2, which
we label, respectively, as bubbles and spikes throughout the entire
simulation. It is important to note that during the first stage of the
compression phase inversion [8] occurs. This means that the per-
turbation which is initially a spike, i.e. heavy fluid surrounded by
light fluid, reverses to become a bubble and vice versa. As such
our label ‘spike’ corresponds to a finger of a heavy fluid surrounded
by light fluid once the phase inversion has occurred, whereas at
early stages it is a finger of light fluid surrounded by heavy. The
converse applies to bubbles.

Early evolution of the normalized spike amplitude is shown in
Fig. 4 for pressure pulses of different duration, each with a maxi-
mum pressure of Pmax ¼ 3:6 GPa and modeled at the finest grid res-
olution. The spike amplitude has been calculated as the difference
between the interface position at point 1 for the case of a perturbed
interface and the coincidental position of the initially unperturbed
interface. One can see that for longer pulses (Tpulse P 200 ls) the
pulse length has no effect on the spike amplitude. However, if
the pulse length falls below some threshold, the spikes’ amplitude
growth slows down, clearly seen by comparing results in Fig. 4 for
the shortest pulse Tpulse ¼ 100 ls (red line) with those obtained for
longer pulses.

Initial disturbance growth rates (indicated by the slope of the
curves in Fig. 4) together with the growth rate predicted by the
Richtmyer impulsive model [1] (given below by Eq. (6)) for our
set of parameters are listed in Table 1.

_hplanar ¼ hþ0 kAþDU; ð6Þ

where k ¼ 2p=k is the wave number of the perturbation, hþ0 and Aþ

are the initial post-shock amplitude and Atwood number, and DU is
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Table 1
Planar case: initial growth rate.

Case h0 (m) Tpulse (ls) _h (m/s)

Richtmyer model [1] (Eq. (6)) 0:002 Infinite 20:7
OpenFOAM simulation 0:002 Infinite 23:0
OpenFOAM simulation 0:002 100 9:8

(a)

(b)

(c)

(d)

Fig. 6. Planar geometry: liquid phase fraction contours (a) initial perturbation with
ho ¼ 2 mm; (b) flow field at t ¼ 450 ls (taken from the moment pressure pulse hits
the interface) for Tpulse ¼ 100 ls; (c) flow field at t ¼ 450 ls for Tpulse ¼ 200 ls; (d)
flow field at t ¼ 450 ls for initially unperturbed interface and pulse duration
Tpulse ¼ 100 ls.
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the velocity jump at the interface following passage of the shock. In
our validation case we use k ¼ 30; hþ0 ¼ 2 mm, Aþ ¼ 1, and
DU ¼ V interface ¼ 345 m=s, resulting in _h � 20:7 m=s (see Table 1).
Our results for longer pulses agree well with the Richtmyer impul-
sive model, while for a shorter pulse the growth rate is lower.

Propagation of the pressure pulse through Pb for the validation
case discussed above is shown in Fig. 5 for pulses with Tpulse ¼ 100
and 200 ls. Contours of the liquid phase fraction are shown in
Fig. 6, where part (a) shows the initial perturbation with amplitude
ho ¼ 2 mm, parts (b) and (c) show the flow field obtained for
pulses with Tpulse ¼ 100 and 200 ls at t ¼ 450 ls from the moment
the pressure pulse hits the interface, and for a sake of complete-
ness, part (d) shows the flow field obtained in the case of the ini-
tially unperturbed interface for the pressure pulse Tpulse ¼ 100 ls
at t ¼ 450 ls. It can be seen that as a pulse propagates through
the Pb its amplitude remains constant (as expected in a planar
geometry), but its shape changes; the front steepens and the back
decays. We can also see that the short pulse has a triangular shape
when it reaches the interface, unlike longer pulses that still have a
considerable ‘flat’ section. This difference in the pulse shape is a
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likely reason for the difference in the perturbation growth rates ob-
tained for a short (Tpulse ¼ 100 ls) and longer (Tpulse P 200 ls)
pulses (see Table 1), as RM instability growth rates are known to
be sensitive to the initial conditions.

A higher perturbation amplitude in the case of the longer pulse
is also evident from Fig. 6 by comparing parts (b) and (c) of the fig-
ure. One can see that while the overall structure of the flow re-
mains similar for pulses of different duration, the thickness of
the spalled layer varies. This is also due to the difference in the
pressure pulse shape proximal to the interface.

3. Results

3.1. Pulse propagation and gas cavity collapse: unperturbed interface

In this section we study the collapse of an initially unperturbed
gas cavity in 2D cylindrical geometry. The numerical results are
validated against existing theoretical models and also used as a
baseline for calculations of the perturbation growth for the runs
with initially perturbed interfaces.
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Propagation of a pressure pulse through the liquid Pb from the
outer boundary towards the interface in a cylindrical geometry is
shown in Fig. 7. The pressure pulse has a maximum initial ampli-
tude of Pmax ¼ 1:5 GPa and duration Tpulse ¼ 100 ls. It can be seen
that the pressure pulse is amplified as it cylindrically converges in
the Pb. This amplification is in excellent agreement with the theo-
retical prediction that a small-amplitude (linear) pulse grows like
P � 1=

ffiffiffi
r
p

in cylindrical geometry [32]. (The pulse is expected to ex-
hibit linear behavior when the particle velocity is much less than
the sound speed.) As the pulse approaches the interface and pres-
sure becomes higher, nonlinearity starts to manifest itself by a
steepening of the pulse front and a slight deviation of the ampli-
tude from the theoretical curve. For the parameters near the inter-
face (Pmax � 3:6 GPa, qPb � 10;500 kg=m3 and cPb � 2000 m=s) the
particle velocity can be roughly estimated as Vp � 171 m=s by Eq.
(5). This velocity is still relatively small (but not negligible) com-
pared to the speed of sound (171 m/s compared to 2000 m/s). Thus
the pulse exhibits predominantly linear behavior as it propagates
through the Pb, although small nonlinear effects become notice-
able near the interface. The time taken for the pulse to reach the
interface 1:3 m away is tpropagation ¼ 650 ls, which agrees with the
prescribed speed of sound cPb ¼ 2000 m=s. In subsequent results,
time is defined relative to the moment the pressure pulse reaches
the interface, such that t ¼ tsim � tpropagation.

A typical structure of the flow field during the collapse of an ini-
tially unperturbed cylindrical cavity is shown in Fig. 8 for a pres-
sure pulse of duration Tpulse ¼ 100 ls and maximum pressure
Pmax ¼ 1:5 GPa. Parts (a) and (b) of the figure show liquid phase
fraction contours when the pressure pulse strikes the interface at
Fig. 8. Structure of the flow field during compression of initially unperturbed gas cavity
contours when the pressure pulse hits the interface; (b) liquid phase fraction contours
t ¼ 0 and when the cavity has partially collapsed at t ¼ 300 ls,
respectively. Part (c) shows the corresponding pressure contours
at t ¼ 300 ls. It is worth reiterating that the imploding material
is liquid Pb with an acoustic impedance much larger than the air
in the cavity. Therefore, the pressure pulse is almost completely re-
flected back into the Pb as a rarefaction wave. The molten lead is
then subjected to tension which causes it to cavitate. It is apparent
in Fig. 8(b) that a Pb shell forms as a result of interaction between
the pressure pulse and the liquid–gas interface. As the shell moves
inwards, a cavitation region forms behind it, separating it from the
rest of the molten lead. The pressure contours in Fig. 8(c) show that
the Pb shell becomes pressurized as it converges, while the pres-
sure in the cavitation region falls to the minimum allowed by the
numerical setup. We should also note that for the initially unper-
turbed interface the inner edge of the shell (liquid–gas interface)
remains smooth during the collapse, whereas some random per-
turbations appear on the outer edge of the shell (Figs. 8(b) and
(c)). Such perturbations are likely to be numerically seeded as cav-
itation layers being formed in molten Pb. The shell formed in this
example is of a sufficient thickness that those perturbations do
not impact the inner edge of the shell and therefore they are of
no concern in the current study.

Radial profiles of the pressure, velocity and liquid phase fraction
at two different instances during the collapse (t ¼ 100 ls and
t ¼ 300 ls) are shown in Fig. 9. We mainly focus on the behavior
of the molten lead because dynamics of the gas bubble have very
little effect on the liquid Pb until the very late stages of the col-
lapse. Liquid phase fraction profiles clearly show the location of
the liquid–gas interface and growth of the cavitation region (char-
acterized by rapid oscillations in the liquid phase fraction profile)
as the interface progresses inwards. Also evident is the increase
in the thickness of the Pb shell as it converges during the collapse
process. From the pressure profiles we can see that the shell is
pressurized as it moves toward the center. The pressure in the cav-
itation region becomes almost zero and the pressure inside the air
increases as it is compressed. Velocity profiles indicate that the
velocity gradually increases towards smaller radii both in the cav-
itation region and the Pb shell, i.e. shell’s inner edge is moving fas-
ter than its outer edge. During early stages of the collapse, the
interface velocity (which is equal to the fluid velocity at the posi-
tion of the interface) roughly corresponds to Eq. (4), but later in-
creases due to the converging geometry.

If we look at the flow field structure inside the gas cavity one
can observe a shock wave propagating through it. This shock wave
is generated in the air due to the sudden acceleration of the inter-
face. The interface is analogous to a piston at rest that suddenly be-
gins moving into a quiescent gas at constant velocity. In this
by pressure pulse with Tpulse ¼ 100 ls and Pmax ¼ 1:5 GPa. (a) Liquid phase fraction
and (c) pressure contours when the cavity has partially collapsed at t ¼ 300 ls.



(a) (b)

Fig. 9. Structure of the flow field during compression of initially unperturbed gas cavity by pressure pulse with Tpulse ¼ 100 ls and Pmax ¼ 1:5 GPa. Radial profiles of liquid
phase fraction (blue dash-dot line), pressure (green solid line), and velocity (red broken line) during the collapse. (a) t ¼ 100 ls and (b) t ¼ 300 ls. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 10. Effect of pressure pulse duration Tpulse on motion of liquid–gas interface
during collapse of initially unperturbed cylindrical cavity. Semi-analytical solution
of Kedrinski [34] is also plotted as black solid line. Maximum pulse pressure is
Pmax ¼ 1:5 GPa.

V. Suponitsky et al. / Computers & Fluids 89 (2014) 1–19 7
situation, a shock front immediately appears, moving away from
the piston with a constant supersonic speed. Ahead of the shock
front the gas is at rest, while behind the shock it moves at the same
velocity as the piston, i.e. the interface velocity in our case (see [33]
Section 3). Note that our numerical method is not sufficient for a
high-accuracy solution of shock wave propagation inside the com-
pressed gas. However, as mentioned earlier, the gas dynamics have
little effect on the collapse, so the current numerical setup is satis-
factory for this study.

It is necessary to accurately predict the trajectory of the liquid–gas
interface throughout the collapse so that the compression efficiency
of our system can be estimated. The motion of an initially unperturbed
interface in cylindrical geometry is shown in Fig. 10. The four different
lines show our numerical results obtained for the pressure pulses of
various durations with maximum pressure Pmax ¼ 1:5 GPa. The theo-
retical solution of Kedrinskii (Section 1.4 in [34]) is also shown by the
black solid line for comparison. One can see that the duration of the
pulse influences the collapse time; longer pulses compress the cavity
faster. This effect, however, diminishes as the pulse duration is in-
creased, such that no difference in collapse time is observed for pulses
with Tpulse P 400 ls. Our results for the longer pulses are also in very
good agreement with a theoretical solution developed by Kedrinskii
[34]) for studying underwater explosions.1 Some additional results
concerning the effect of the pressure pulse amplitude as well as collapse
characteristics of the initially unperturbed spherical cavity can be found
in our earlier work [36].

It is worth noting that in the current numerical setup the gas
never becomes sufficiently pressurized to affect the trajectory of
the interface, which accelerates all the way to the axis due to
geometrical convergence. In reality, however, the interface under-
goes rapid deceleration later in the compression because the gas
pressure becomes comparable to the pressure in the Pb shell. This
1 Detonating an explosive charge underwater distributes energy between detona-
tion products and liquid. The gas in the explosive cavity is heated and acts as a piston
on the water, generating a shock wave. The Kirkwood-Bethe approach [35] to the
problems of underwater explosion can be used to derive the pulsation equation, the
equation of motion for the edge of the cavity. Because it applies to states after the
detonation, it can also be applied to our problem of a shock impinging on a pre-
existing cavity. The pulsation equation for a one-dimensional isentropic compressible
liquid flow is presented by Kedrinskii [34] as
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where R is the cavity radius, c is the local speed of sound, H is the enthalpy on the
cavity wall from the liquid side, and m depends on the symmetry, which can be pla-

nar (m ¼ 0), cylindrical (m ¼ 1), or spherical (m ¼ 2). When the pressure in the cavity

is much less than the shock pressure, the enthalphy at the interface is always zero

(H ¼ 0), eliminating the RHS. Then the liquid collapse is determined only by geo-
metric convergence, which can be solved numerically.
deceleration is very important as the interface becomes Rayleigh–
Taylor unstable during this phase.
3.2. The Richtmyer–Meshkov instability

Now we turn our attention to the development of the RM insta-
bility during the collapse due to imperfections that may be present
on the liquid–gas interface. In order to understand how various
perturbations are going to affect the compression efficiency of
our system, we study effects of the initial perturbation amplitude
and azimuthal mode number. The parameters for each simulation
are summarized in Table 2. In all cases, the pressure pulse has an
amplitude of Pmax ¼ 1:5 GPa and a duration of Tpulse ¼ 100 ls.

A typical perturbation evolution during the early and late stages
of the collapse is shown in Figs. 11 and 12, respectively. In both fig-
ures, the liquid phase fraction contours are plotted in the first row
and the corresponding contours of the ẑ vorticity component mul-
tiplied by liquid phase fraction are plotted in the second row.2 The
position of the initially unperturbed interface is also shown by the
black solid line. Results are presented for case N12A002 listed in Ta-
ble 2 with an initial amplitude of h0 ¼ 2 mm and n ¼ 12.

One can see that once the pressure pulse interacts with the per-
turbed liquid–gas interface (Fig. 11 at t ¼ 0), vorticity is immedi-
ately generated in the vicinity of the interface because density
and pressure gradients are initially misaligned, i.e. the mechanism
2 Due to very high velocities and gradients, vorticity attains very high values in the
gas, hiding what happens in the Pb. Multiplying vorticity by liquid phase fraction
basically gives us vorticity contours only in the Pb, which is of greatest interest.



Table 2
List of parameters for the simulations performed.

No. Name n h0 (m) h0=R0 h0=k0

1 N3A001 3 0.001 0.005 0.002387
2 N4A001 4 0.001 0.005 0.003183
3 N6A001 6 0.001 0.005 0.004775
4 N8A001 8 0.001 0.005 0.006366
5 N12A001 12 0.001 0.005 0.009549
6 N12A002 12 0.002 0.010 0.019098
7 N16A001 16 0.001 0.005 0.01273
8 N24A001 24 0.001 0.005 0.01909
9 N32A001 32 0.001 0.005 0.02546
10 N6A002 6 0.002 0.010 0.009549
11 N6A004 6 0.004 0.020 0.01909
12 N6A010 6 0.010 0.050 0.04775
13 N3A004 3 0.004 0.020 0.009549
14 N3A008 3 0.008 0.040 0.01909
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of baroclinic vorticity generation. For a pulse passing from a heavy
fluid into a light one, the deposited vorticity initially acts in the
direction opposite to that of the perturbation, smoothing the inter-
face during the early evolution stages (Fig. 11 at t ¼ 44 ls). Vortic-
ity then continues to deflect the interface leading to the growth of
the perturbation in the opposite direction, i.e. phase inversion
(Fig. 11 at t ¼ 110 ls and t ¼ 210 ls). The asymmetry between
the spikes and bubbles observed in Fig. 11 at t ¼ 210 ls indicates
that the perturbation is entering a nonlinear stage of evolution.

There are two nondimensional parameters that can be used to
characterize evolution of the perturbation amplitude. The first
one is the ratio of the perturbation amplitude and wavelength
hðtÞ=kðtÞ. Similar to the planar case, perturbation evolution is con-
sidered to be linear when hðtÞ=kðtÞ � 1. However, in cylindrical
geometry the wavelength of the perturbation decreases as the cav-
ity collapces so that nonlinear effects become prominent earlier
than in the planar case. The second parameter is the ratio between
the disturbance amplitude and radius of the cavity hðtÞ=RðtÞ. This
parameter indicates how much the perturbation evolution is influ-
enced by the curvature of the interface. For small-amplitude dis-
Fig. 11. Early development of RM instability shown by liquid phase fraction contours (firs
by liquid phase fraction (second row). Initial perturbation is at azimuthal mode n ¼ 12
interface position for initially unperturbed case. Pressure pulse has amplitude Pmax ¼ 1:
turbances, the parameter hðtÞ=RðtÞ is small. At early stages of the
collapse only low azimuthal modes are expected to be influenced
by the curvature of the interface as they have significant ratios of
kðtÞ=RðtÞ, whereas early evolution of the perturbations at higher
azimuthal modes is expected to be similar to that of the planar
case. As the cavity continues to be compressed, however, the de-
crease in cavity radius increases the number of modes that are af-
fected by curvature. Therefore, while the initial motion may be
negligibly different from the planar case, we expect convergence
effects to manifest themselves more strongly as compression
proceeds.

Keeping the above in mind we follow the spike evolution in
Figs. 11 and 12. One can see that after phase inversion is complete
(t ¼ 110, 210, and 312.5 ls), the spike amplitude grows, i.e. the
distance increases between the crest of the perturbation and the
position of the initially unperturbed interface. At later stages
(t ¼ 350, 362.5, and 375 ls), the spike amplitude starts to de-
crease. This decrease in the perturbation amplitude correlates with
the increase of parameter hðtÞ=RðtÞ. By examining the vorticity dis-
tribution, a reversal of the vorticity along the spike interface near
the crest can be observed. This change in direction of rotation cor-
relates with the direction of interface deflection, best seen by com-
paring times t ¼ 210 and 312.5 ls. One can also see the Kelvin–
Helmholtz (K–H) instability that develops on the sides of the bub-
bles and spikes at later times t > 300 ls, giving them a serrated
appearance.

Another interesting phenomenon that can be observed in
Figs. 11 and 12 is the formation of narrow molten lead jets (ribs)
originating from the head of the bubble after t ¼ 350 ls. Formation
of such jets has been observed in our simulations for perturbations
with azimuthal mode numbers higher than four ðn > 4Þ. The prom-
inence of the jets is dependent on the amplitude and mode of the
initial perturbation. For this example case, the narrow jets only
form but do not overtake the original spikes during the collapse.
Instead, the spikes grew sufficiently to contact one another near
the center, despite the deceleration they experience late in the
collapse.
t row) and contours of the vorticity component in ẑ direction (units ½1=s	) multiplied
with amplitude of h0 ¼ 2 mm (Case N12A002 in Table 2). Black solid line shows

5 GPa and duration Ppulse ¼ 100 ls.



Fig. 12. Late development of RM instability shown by liquid phase fraction contours (first row) and contours of vorticity component in ẑ direction (units ½1=s	) multiplied by
liquid phase fraction (second row). Initial perturbation is at azimuthal mode n ¼ 12 with amplitude of h0 ¼ 2 mm (Case N12A002 in Table 2). Black solid line shows interface
position for initially unperturbed case. Pressure pulse has amplitude Pmax ¼ 1:5 GPa and duration Ppulse ¼ 100 ls.
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For the case of a perturbation with the same mode, but a lower
initial amplitude, the situation is different, as shown in Fig. 13. This
figure is in the same format as Fig. 12 (first row showing liquid
phase fraction contours and the second z-vorticity component
multiplied by the liquid phase fraction), but for case N12A001 in
Table 2, which has a lower initial amplitude of h0 ¼ 1 mm. One
can see that for this smaller perturbation, amplitude decreases
during the late stages of the collapse; a second phase inversion.
Fig. 13. Formation of rib-like jets during late stages of collapse. Liquid phase fraction co
½1=s	) multiplied by liquid phase fraction are shown in second row. Initial perturbation is
shows interface position for initially unperturbed case. Pressure pulse has amplitude Pm
The reason for this kind of oscillatory behavior is discussed further
in Section 3.2.3. By comparing vorticity distributions at times
t ¼ 312:5 and 350 ls in Fig. 13, it becomes apparent that this oscil-
latory behavior is accompanied by a reversal of the sign of
vorticity.

With regard to the formation of the narrow molten lead jets, it
can be seen that in this case they move fast enough to overtake the
original spikes and reach the center first. We are not aware of such
ntours are shown in first row. Contours of vorticity component in ẑ direction (units
mode n ¼ 12 with amplitude h0 ¼ 1 mm (Case N12A001 in Table 2). Black solid line
ax ¼ 1:5 GPa and duration Tpulse ¼ 100 ls.
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jets being observed in other works that use two gases with a mod-
erate Atwood number as the working fluids. A very similar phe-
nomenon has been observed, however, in the recent works of
Enriquez et al. [37,38]. In those works gravity-induced collapse of
nonaxisymmetric air cavities created by driving a metal disc
through an initially quiescent water surface has been investigated.
In [37,38] a formation of ridge-like jets at the head of bubble has
been observed over the range of azimuthal mode numbers and
amplitudes of the initial perturbation (see for example Fig. 1 in
[37] and Fig.11 in [38] for perturbation at n ¼ 6). Formation of such
jets at low azimuthal modes (n 6 4) has not been observed in
[37,38] which fully agrees with our results. The narrow jets are ob-
Fig. 14. Effect of initial perturbation amplitude shown by liquid phase fraction contou
duration Tpulse ¼ 100 ls. Each row of figure corresponds to a unique initial amplitude: h
served to form in experiment when the bubble structure becomes
pointy at some moment during the nonlinear stage. The jets origi-
nate in singular cusps where the flow converges.

Examining our results (Fig. 13) we can see that: (i) formation of
these narrow jets occurs during the nonlinear stage of the collapse,
i.e. the perturbation amplitude is not small compared to either the
disturbance wavelength or to the instant radius of the cavity, (ii)
formation of the jets correlates with the onset of the second phase
inversion, i.e. vorticity distribution along the bubble interface
causes the interface to deflect such that the bubble amplitude
starts to decrease, i.e. the bubble interface moves in the same
direction as the narrow jets; (iii) the shape of the bubble just be-
rs. Perturbation is at azimuthal mode n ¼ 6, pulse pressure Pmax ¼ 1:5 GPa, pulse
0 ¼ 1, 2, 4, and 10 mm; Cases N6A001, N6A002, N6A004, and N6A010 in Table 2.



(a)

(b)

Fig. 15. (a) Typical position and (b) velocity of spike interface (red broken line),
bubble interface (green dashed-dotted line), and initially unperturbed interface
(black solid line) for case N6A002 in Table 2 with pulse pressure Pmax ¼ 1:5 GPa and
pulse duration Tpulse ¼ 100 ls. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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fore the beginning of the jet formation does not appear to be as
pointy as in experiments [37,38], but at the same time it definitely
deviates from sinusoidal; (iv) the vorticities of opposite sign on
each side of the bubble appear to interact at the head of the bubble
and form the jets, (v) the interaction of vorticity sheets of opposite
sign occurs only next to the bubbles, whereas at the head of the
spike vorticity appears to be rather weak. As such, the formation
of the narrow molten Pb jets depends on the azimuthal mode
and amplitude of the perturbation and occurrence of the second
phase inversion once the perturbation is in the nonlinear stage.
The occurrence of the second phase inversion depends on the col-
lapse trajectory characteristics and is discussed in Section 3.2.3.
The conditions under which jets form in our simulations seem to
agree with experimental observations in [37,38].

3.2.1. Effect of initial perturbation amplitude
The evolution of perturbations with various initial amplitudes is

shown in Fig. 14 by liquid phase fraction contours. Rows in the fig-
ure correspond to the evolution of n ¼ 6 perturbations with differ-
ent initial amplitudes: cases N6A001, N6A002, N6A004 and
N6A010 in Table 2. One can see that for the small-amplitude initial
perturbation (first row) no significant nonlinear effects are ob-
served and the spikes and bubbles remain nearly symmetric
throughout the time period shown. As the amplitude increases,
nonlinear effects begin to manifest themselves in the growing
asymmetry between the spikes and bubbles. The spike appears to
accelerate and becomes sharper, whereas the bubble appears to
stagnate. For the current Atwood number of A � �1, the spikes
are significantly sharper than those simulated for lower Atwood
numbers. This has also been observed in numerical simulation of
Tian et al. [16] as well as in experimental results of RM instability
growth of solid and liquid metals in vacuum of Buttler et al. [24].
This is probably because in the case of such extreme density ratio,
gas flow around the spike has a very little effect on the spike
dynamics. Kelvin–Helmholtz instability, which is responsible for
the formation of the mushroom like perturbation shape during
the nonlinear stage for fluids with not to large density ratio, does
not develop in the same manner in our case.

Fig. 14 also illustrates that the shape of the molten lead shell
surrounding the gas cavity is affected by the initial imperfections
of the interface. The distortion of the shell increases as the initial
perturbation amplitude is increased. For the largest tested ampli-
tude (row four), the thickness of the shell behind the bubble almost
goes to zero.

Before proceeding to the plots of the evolution of spikes and
bubbles, we would like to once more clarify the notation being
used in all our plots. We follow extrema of the perturbation
throughout the entire simulation, therefore our notation of ‘spike’
and ‘bubble’ corresponds to that usually used in the literature from
the moment the phase inversion has occurred, as explained earlier
in the validation section.

This is illustrated in Fig. 15 for the case N6A002 in Table 2. Part
(a) shows a typical evolution of the spike (red broken line) and
bubble (green dash-dot line) interface position along with the po-
sition of the initially unperturbed interface (black solid line). Part
(b) of the figure shows the corresponding interface velocities. Time
t ¼ 0 corresponds to the moment when the pressure pulse hits the
interface and the collapse begins. One can see that at t ¼ 0, the red
and green lines corresponding to the maximum and minimum of
the initial perturbation are above and below the radial position
of the initially unperturbed interface (black line), respectively,
and the difference between those lines defines the amplitude of
the initial perturbation h0. The perturbation decreases in ampli-
tude until around t � 100 ls (when phase inversion occurs) and
then starts to grow in the opposite direction. From that moment
our notation of ‘spike’ and ‘bubble’ matches that commonly used
in literature, i.e. a finger of light fluid poking into heavy fluid for
a ‘bubble’, and that of heavy into light for a ‘spike’.

At late stages of the collapse the difference between red and
black lines as well as between green and black lines starts to de-
crease again eventually accompanied by another reversal, and in
some cases by formation of the narrow molten lead jets.
Fig. 15(b) shows the rapid acceleration of the interface resulting
from its interaction with the pressure pulse. During early stages
of the collapse, the velocities of the spikes, bubbles, and that of
the unperturbed interface are nearly constant. Later the velocity
of the unperturbed interface increases considerably due to the geo-
metric convergence.

The effect of initial amplitude on the perturbation growth is
shown in Fig. 16 for cases N6A001, N6A002, N6A004 and N6A010
in Table 2. The left column (parts a and b) and the right column
(parts c and d) in Fig. 16 show the amplitude evolution of the
spikes and bubbles, respectively. The top row shows the amplitude
normalized by its initial value h0, while the bottom row shows the
amplitude normalized by the radius of the unperturbed gas cavity
RðtÞ.

Examining the growth characteristics of the spike we can ob-
serve the following: (i) at early times growth of the spikes scales
well with the initial perturbation amplitude for all amplitudes un-
der consideration, (ii) after the phase inversion when the curves
pass through zero for the first time, spike amplitude growth is fas-
ter for higher initial amplitudes, (iii) at large initial amplitudes the
spike arrives at the center while it is still growing, so that no de-
crease of the spike amplitude is observed during the latest stages.
For small initial amplitudes the spikes experience deceleration
during late times, leading to a rapid decrease in spike amplitude.
By comparing the growth characteristics of spikes and bubbles, it
is apparent that the bubble amplitude does not scale as well with
the initial perturbation amplitude, even early in the collapse. The
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(b)
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Fig. 16. Effect of initial amplitude on perturbation growth. Left and right columns correspond to spike and bubble evolution. (a) and (c) Evolution of normalized perturbation
amplitude. (b) and (d) Evolution of ratio between perturbation amplitude and radius of unperturbed gas cavity. Azimuthal mode number n ¼ 6 with pressure pulse
Pmax ¼ 1:5 GPa and Tpulse ¼ 100 ls.
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bubble amplitude growth is significantly reduced for larger initial
perturbations when compared to smaller ones. For the small-
amplitude perturbations, a decrease in bubble amplitude can be
seen at the latest stages. This decrease is related to formation of
the rib-like jets and their rapid propagation toward the center of
the cavity, as discussed earlier.

The effect of initial amplitude on the growth rates of spikes and
bubbles is shown in Fig. 17. The left and right columns of the figure
show the velocities of the spikes and bubbles (relative to the veloc-
ity of the unperturbed interface) corresponding to the data in
Fig. 16. Dimensional velocities are plotted in the first row of the fig-
ure and the same velocities normalized by the corresponding
velocity at t ¼ 40 ls (immediately after the initial acceleration of
the interface has been completed) are plotted in the second row.
In Figs. 16(a) and (c) a negative velocity corresponds to the situa-
tion in which the perturbed interface (either spike or bubble)
moves inwards faster than the initially unperturbed interface,
whereas a positive velocity indicates that the perturbed interface
moves inwards slower than the unperturbed interface (although
it still moves inwards).

From the velocity plots one can see that after some finite initial
time required to accelerate the interface from rest (t � 40 ls), the
velocities of both spikes and bubbles approach a nearly constant
value for a little while. This value is taken as the initial velocity that
is used for scaling. Both spikes and bubbles undergo gradual accel-
eration until late times, when there is rapid deceleration, except for
cases with large initial amplitudes in which the spikes reach the
axis before this decelerate phase can occur. For all amplitudes un-
der consideration, the bubble growth rate scales well with initial
bubble velocity until the collapse is well underway. The spike
growth rate also scales well, except for large amplitude perturba-
tions, in which the growth rate saturates more quickly than the
other cases.
3.2.2. Effect of azimuthal mode number
The behavior of spikes and bubbles is tested for various repre-

sentative azimuthal mode numbers in the range 3 6 n 6 32, with
the results displayed in Fig. 18. The left columns (a)–(d) and the
right columns (e)–(h) correspond to the evolution of spikes and
bubbles, respectively. The first row of the figure (a) and (e) shows
amplitude evolution of spikes and bubbles normalized by the ini-
tial perturbation amplitude h0. The second row (b) and (f) shows
the same data but with time scaled by the mode n. The third row
of the figure (c) and (g) shows the perturbation amplitude normal-
ized by the corresponding instantaneous cavity radius RðtÞ for the
initially unperturbed interface. Finally, the fourth row (f) and (g)
shows the same data normalized by the corresponding instanta-
neous perturbation wave length kðtÞ.

From the plots in the first two rows of Fig. 18 the following can
be observed: (i) for the setup and parameters under consideration
the perturbation evolution at low azimuthal numbers (n ¼ 3;4)
differs from that at higher azimuthal mode numbers. In particular,
the decrease in the perturbation amplitude (and in most cases a
second phase inversion) observed at higher azimuthal modes at
the latest stages of the collapse does not occur at low azimuthal
mode numbers; (ii) at higher azimuthal modes (n ¼ 24;32) the
maximum amplitude attained by spikes is significantly higher than
that of bubbles; (iii) the first phase inversion time roughly scales
with the azimuthal mode number; (iv) the second phase inversion,
often accompanied by the formation of the narrow jets (ribs) at the
head of each bubble is clearly seen in parts (b) and (f) of the figure.
However, in the case of large azimuthal mode, the cavity collapses
before the second phase inversion is completed, as can be seen
from the n ¼ 32 curves.

Results presented in the third and fourth rows of Fig. 18 empha-
size convergence and nonlinear effects, respectively. One can see
that convergence effects, expressed by ratio hðtÞ=RðtÞ (c and g), be-
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Fig. 17. Effect of initial amplitude on perturbation growth rate. Left and right columns correspond to spike and bubble evolution, respectively. (a) and (c) Perturbation growth
rate. (b) and (d) Perturbation growth rate normalized by its initial growth rate at t ¼ 40 ls. Azimuthal mode number n ¼ 6 with pulse pressure Pmax ¼ 1:5 GPa and pulse
length Tpulse ¼ 100 ls.

3 Atwood number in Eq. (8) is defined according to Mikaelian [18] which is of an
opposite sign to our definition, i.e. our A ¼ �1 corresponds to A ¼ 1 in [18].
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come significant for all azimuthal modes at some point during the
collapse. For the current set of simulations with the same initial ra-
tio h0=R0 for all modes, the ratio hðtÞ=RðtÞ grows faster for larger
azimuthal mode numbers. The lower azimuthal modes are also
influenced by convergence during the entire collapse, as they have
high values of kðtÞ=RðtÞ, i.e. they ‘see’ the curvature of the interface
at all times. With respect to the nonlinear effects (d and h), one can
see that a significant degree of nonlinearity is reached by all per-
turbations during the collapse. Perturbations with higher azi-
muthal modes undergo higher initial growth rates and
consequently experience nonlinear effects earlier in the collapse,
thereby attaining a higher degree of nonlinearity. This explains
the growing disparity between spike and bubble amplitudes as
the azimuthal mode number increases, as seen in the first and sec-
ond rows of the figure.

For the sake of completeness, the width of the mixing layer ex-
pressed as a difference between radial position of the spike and
bubble interfaces (difference between broken red and dash-dot
green lines in Fig. 15) is shown in Fig. 19 for all azimuthal modes.
The plotted mixing layer width ðRspike � RbubbleÞ is normalized by
2h0 so that its initial value is one. At low azimuthal modes (n = 3,
4) the width of the mixing layer gradually decreases for a signifi-
cant portion of the collapse (as the first phase inversion takes
place), followed by some increase before its growth slows down
again as the interface approaches r ¼ 0. As the azimuthal mode
number increases, the mixing layer width undergoes more or less
monotonic growth for some time after the first phase inversion.
Then it starts to decrease and for azimuthal modes n P 6 crosses
zero again. For the current set of simulations, the second reversal
of the mixing layer width sign corresponds to the situation when
narrow jets (ribs), which appear at the head of the bubble, reach
the origin before arrival of the original spike (see Fig. 13).
3.2.3. Comparison with existing models for small-amplitude
perturbations

In this section we compare our results with the Mikaelian the-
oretical model [18] for small-amplitude disturbances in cylindrical
geometry. The evolution of small-amplitude perturbations in cylin-
drical geometry for an arbitrary collapse history is governed by the
following equation (Eq. 1b in [18]):

d2h

dt2 þ 2
_R
R

dh
dt
� ðnA� 1Þ

€R
R

h ¼ 0; ð8Þ

where h is the perturbation amplitude, R; _R and €R are position,
velocity and acceleration history of the unperturbed interface, n is
the mode number of the perturbation and A is the Atwood number.3

Assuming the interface moves with constant velocity after the shock
(pure RM instability), the solution of Eq. (8) simplifies to the follow-
ing expression (Eq. 3b in [18]):

hðtÞ ¼ hð0Þ 1þ ðnA� 1Þð1� R0=RÞ½ 	: ð9Þ

Using the collapse trajectory from our simulation of the unper-
turbed interface, we calculated perturbation evolution with both
methods: solving the Eq. (8) and using Eq. (9) that assumes a con-
stant interface velocity. The following boundary conditions have
been used to solve Eq. (8),

hðt ¼ 0Þ ¼ h0;
_hðt ¼ 0Þ ¼ _hcylindrical: ð10Þ

The initial perturbation growth rate was calculated by the following
equation [18],



(a) (e)

(b) (f)

(c) (g)

(d) (h)

Fig. 18. Effect of azimuthal mode number n on perturbation growth. Left and right columns correspond to spike and bubble evolution, respectively. (a) and (e) Perturbation
amplitude normalized by its initial amplitude h0. (b) and (f) Same but with time scaled by mode n. (c) and (g) Perturbation amplitude normalized by radial position of
unperturbed interface. (d) and (h) Perturbation amplitude normalized by perturbation wavelength. Pressure pulse with Pmax ¼ 1:5 GPa and Tpulse ¼ 100 ls.
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_hcylindrical ¼ ðnA� 1Þ h0

R0
V interface; ð11Þ

where Ro and V interface are the initial radial position and velocity of
unperturbed interface, respectively.
For completeness, the initial perturbation growth rate for a
planar case and small- amplitude perturbation is given by [1] as:

_hplanar ¼ h0kAV interface; ð12Þ
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where as usual, h0 denotes the initial perturbation amplitude, A is
the Atwood number, k ¼ 2p=k ¼ n=R0 is the wave number, n is
the azimuthal mode, and V interface is the initial velocity of the undis-
turbed interface (see Eq. (4)).

Fig. 20 shows the collapse history used to solve Eqs. (8) and (9);
the trajectory of the interface, its velocity and acceleration are
shown, respectively, by the red solid line, blue broken line and
green dash-dotted line. We can see that after the initial rapid accel-
eration of the interface, its velocity remains nearly constant until
geometric convergence becomes important and the interface
undergoes acceleration through the rest of the collapse. We al-
lowed gas to escape from the domain so the gas pressure never
gets high enough to cause deceleration of the shell.

Comparison between our numerical results and the Mikaelian
theoretical model [18] is shown in Fig. 21 for perturbations with
different azimuthal modes. Evolution of the spikes and bubbles ob-
tained in our simulations is plotted by a red solid line with filled
symbols and a green solid line with hollow symbols, respectively.
The black solid and broken lines correspond to the theoretical
models [18] given by Eqs. (8) and (9), respectively. When compar-
ing the theoretical models one can see that they are almost identi-
cal for the initial 150–250 ls but after that begin to diverge. When
a constant velocity of the interface is assumed (black broken line)
the perturbation grows monotonically throughout the collapse
after the first phase inversion. However, when the exact collapse
history is used (black solid line), the perturbation growth exhibits
an oscillatory behavior with additional phase inversions that be-
comes more pronounced as the collapse proceeds and also varies
Time

R
[m

]

R
[m

/s
]

0 100 20
0

0.05

0.1

0.15

0.2

-1000

-800

-600

-400

-200

0

.

Fig. 20. Collapse history of unperturbed gas cavity used for calculation of linear perturb
and interface acceleration €R are shown correspondingly by the solid red line, dash-d
Pmax ¼ 1:5 GPa and Tpulse ¼ 100 ls. (For interpretation of the references to colour in this
with azimuthal mode number. The oscillatory behavior predicted
by Eq. (8) is attributed to the inward acceleration of the interface
that becomes more prominent during the late stages of the col-

lapse. One can see that the third term in Eq. (8), ðnA� 1Þ €R
R gÞ

h i
,

increases with acceleration and azimuthal mode number. This
explains why the disparity between the two models (black solid
and broken lines in Fig. 21) manifests itself earlier at higher
azimuthal modes, despite having the same acceleration history.

The excellent agreement between our numerical results and the
theoretical model given by Eq. (8) can be seen by comparing the
red and green lines with symbols with the black solid line in
Fig. 21. At low azimuthal modes (a and b) the growth rates pre-
dicted by the models are somewhat higher than those obtained
in simulations, but the behavior is reproduced correctly. For the
perturbations with azimuthal mode numbers within the range
6 6 n 6 16 (c, d, e and f of the figure) the agreement between
numerical and theoretical results is remarkable. The second phase
inversion, which is accompanied by the formation of narrow jets
from the heads of bubbles in our simulations, is accurately cap-
tured by the theoretical model. At high azimuthal mode numbers
(g and h) the oscillatory behavior predicted by the model is of a
shorter period compared to our numerical results but again the
overall behavior is captured very well. For high azimuthal mode
number perturbations, the nonlinear effects become prominent
quite early in the collapse (see Fig. 18), resulting in disparity be-
tween spike and bubble evolution. Therefore, it is not unexpected
that our results for high azimuthal numbers deviate from those
predicted by the model which is valid for the small-amplitude per-
turbations. Nevertheless, the amplitude predicted by this model
agrees well with that for spikes obtained in simulation, whereas
the amplitude of the bubble is overestimated.

There are two more points we would like to add regarding the
Mikaelian theoretical model (Eq. (8)). The first one is that the re-
sults predicted by this model are robust with regard to small oscil-
lations in the acceleration history. We used both smoothed and
randomly oscillating (direct from the numeric results) acceleration
history for the solution of Eq. (8) and the results were basically the
same. Insensitivity of the solution to small oscillations in the accel-
eration history was also reported by Mikaelian [39]. The second
point is that the somewhat oscillatory behavior observed at late
stages of the collapse is essentially the same as the linear oscilla-
tions known to occur during gravity-driven collapse of a gas bub-
ble. An illustration of such oscillations can be found in recent
work [38], for example.

Finally, in Fig. 22 we present initial perturbation growth rates
for the different azimuthal mode numbers taken at t � 40 ls, after
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ation growth according to Mikaelian [18]. Interface trajectory R, interface velocity _R
ot green line and broken blue line. Collapse history is for pressure pulse with
figure legend, the reader is referred to the web version of this article.)
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Fig. 21. Comparison between our numerical results and small-amplitude theoretical model of Mikaelian [18] for perturbation growth normalized by its initial amplitude h0 at
different azimuthal numbers n. Spike and bubble amplitudes are shown by red lines with filled symbols and green lines with hollow symbols, respectively. Theoretical models
given by Eqs. (8) and (9) are shown by black solid and broken lines, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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the initial acceleration of the interface has been completed. Our re-
sults for the growth rates of spikes and bubbles are shown by red
triangles and green circles, respectively. Data obtained from the
two linear models, for planar geometry by Richtmyer [1] (Eq.
(12)) and for cylindrical geometry by Mikaelian [18] (Eq. (11)),
are shown by solid and broken lines, respectively. The growth rates
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article.)
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presented in Fig. 22 show encouraging agreement with the linear
models for the range of perturbations being considered. However,
it is apparent that the growth rates change for the higher azi-
muthal modes (n > 16 in our data set). This is probably because
there are more pronounced nonlinear effects at those modes: in
all our simulations the parameter ho=Ro has been kept constant
and therefore, the parameter ho=ko increases with the azimuthal
mode number of the perturbation.

To summarize, the initial growth rates can be predicted quite
well by both planar and cylindrical models, but if growth rates dur-
ing the entire evolution are of interest, then a theoretical model
that properly accounts for the effects of cylindrical geometry and
a prescibed collapse history should be used.

4. Summary

In this work, the development of the Richtmyer–Meshkov insta-
bility was studied for the case of a cylindrical gas bubble com-
pressed by an imploding Pb lead shell. The main contribution of
this work is to explore the RM instability in the extreme regime
of Atwood number A ¼ �1 with a liquid as one of the working flu-
ids. Our motivation is to estimate the minimum smoothness re-
quired to achieve efficient compression of the gas cavity.
Simulations have been performed using the OpenFOAM software
for a set of parameters relevant to the prototype compression sys-
tem under development at General Fusion Inc. as a driver for mag-
netized target fusion. The main results and conclusions are
summarized below:


 In the regime of Atwood number A ¼ �1, there is a disparity
between the growth rates of spikes and bubbles; spikes undergo
acceleration while bubbles move at nearly constant velocity.
This disparity in growth rates becomes more prominent as the
amplitude of the initial perturbation is increased.

 The shape of the spikes obtained for the current set of parame-

ters is different from that usually observed in the regime of
moderate Atwood numbers. The spikes retain a sharp pointy
structure and do not develop into the typical mushroom shape.
This is an agreement with existing numerical [16] and experi-
mental [24] results. This difference in the shape is likely to be
related to the differences in the development of the Kelvin–
Helmholtz instability at extreme and moderate Atwood num-
bers, as the Kelvin–Helmholtz instability is the main mecha-
nism behind the development of the mushroom shape at
moderate Atwood numbers.

 During the late stages of the collapse the perturbation ampli-
tude decreases again, resulting in a second phase-inversion for
higher azimuthal modes. This kind of oscillatory behavior is
attributed to the inward acceleration of the interface that
increases as the cavity radius decreases.

 The formation of narrow molten lead jets propagating inwards

and originating from the head of the bubbles has been observed
later in the collapse for modes n > 4. These jets are formed dur-
ing the nonlinear stage of collapse and correlate with the onset
of the second phase inversion. Our results indicate that they are
caused by the interaction of vorticity sheets of opposite sign at
the head of the bubble. To the best of our knowledge, these jets
have not been observed at a gas–gas interface with moderate
Atwood number.

 A comparison of our numerical results with the recent theoret-

ical model of Mikaelian [18] for small-amplitude perturbations
shows good agreement. Further testing of this model to study
the range of its applicability and limitations is highly desirable.

 To maintain sufficient compression efficiency, low-mode inter-

face perturbations are not likely to be detrimental. However,
high-mode perturbations are problematic and must be kept to
a minimum.

 The Open-source CFD code OpenFOAM and the current numer-

ical setup seems to capture relevant physics and produce valu-
able results.

The numerical setup used in the present work can be further ex-
tended to include more physics. (i) The isothermal assumption
could be eliminated to better understand energy losses during
the pulse propagation through the molten lead, which is important
for stronger pressure pulses and shocked up fronts. (ii) A more
sophisticated cavitation model could be added to better model
the formation of the molten Pb shell resulting from the interaction
between the pressure pulse and the liquid–gas interface. (iii) A
more sophisticated equation of state for the gas could include tem-
perature and magnetic stress effects. The correct dynamics of the
gas (plasma) late in the collapse is crucial as it is responsible for
the deceleration of the interface and this deceleration will affect
perturbation evolution. (iv) Effects of the magnetic field on the
dynamics of the molten lead could be added.

Some of this work is currently in progress. In addition to incor-
porating more physics into simulation, we intend to study effects
of the pressure pulse shape and fluid rotation.

Appendix A. ‘compressibleInterFoam’

The solver ‘compressibleInterFoam’ is based on the solver
‘interFoam’ [40] and extends it to account for fluid compressibility
effects. A detailed description and implementation of the inter-
Foam solver as well as its evaluation can be found in a recent work
by Deshpande et al. [41]. Additional details of implementation of
the Volume-of-fluid (VOF) method in OpenFOAM can be also found
in the Ph.D. Thesis of Rushe [42]. The governing equations solved in
‘compressibleInterFoam’ are given below:

Mass continuity Equation:

@q
@t
þ5 � ðqUÞ ¼ 0: ðA1Þ

Continuity equation for each of the phases:

@qai

@t
þ5 � ðqaiUiÞ ¼ 0; ðA2Þ

where the subscript i denotes the phase and a is the phase fraction.
(The exact form of the phase conservation equation solved in ‘com-
pressibleInterFoam’ is derived and discussed later.)
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Momentum equation:

@qU
@t
þ5 � ðqUUÞ ¼ �5 P þ 2

3
l5 �U

� �
þ 5 � l5 Uð Þ þ 5U � 5l½ 	 þ qg

þ
Z

C
rjdðx� xsÞn dCðxsÞ; ðA3Þ

where C is the gas–liquid interface, dðx� xsÞ is the three-dimen-
sional Dirac delta function. The force of surface tension is calculated
using the continuum surface force (CSF) model of Brackbill et al.
[43]. The integral form of the surface tension term is given by:Z

C
T

Xi

rjndCðxsÞ ¼
Z

Xi

rj5 a1 dV ; ðA4Þ

where r is the surface tension, j is the curvature of the free surface
and a1 is the phase fraction of phase 1. Curvature of the free surface

is calculated from the phase fraction a1 as j ¼ �5 � 5a1
5a1j j

� �
.

Equation of state: In the current study OpenFOAM version 1.7.1
was used. In this version both fluids are assumed to be isothermal
and a barotropic equation of state is implemented as:

qi ¼ qoi þ wiP; ðA5Þ

where the subscript i denotes the phase and w is the compressibility
w ¼ 1=c2 with c being the speed of sound. For a gas (compressible
phase) the nominal density qo is set to zero. This results in an ideal
gas equation of state for an isothermal fluid. For a liquid (low com-
pressibility phase) qo is set to the nominal density of the liquid un-
der normal conditions. Both fluids are treated as a single fluid
‘‘mixture’’ whose properties vary in space according to the volume
fraction of each phase:

q ¼ a1q1 þ a2q2; l ¼ a1l1 þ a2l2; where a1 þ a2 ¼ 1: ðA6Þ

The same is valid for velocity U in Eqs. (A1) and (A3), i.e.
U ¼ a1U1 þ a2U2.

Derivation of phase fraction continuity equation: The discret-
ization of the convective term in Eq. (A2) is crucial and low-order
schemes are known to smear the interface [26]. In OpenFOAM this
equation is modified in such a way that it includes an additional
‘compression’ term that helps to prevent smearing of the interface.
We first show the derivation of the ‘compression’ term for the
incompressible flow, as it is implemented in ‘interFoam’ by Rushe
[42], and then extend derivation to the compressible case.

For incompressible fluid the equation of phase continuity is gi-
ven by:

@ai

@t
þ5 � ðaiUiÞ ¼ 0; ðA7Þ

where the subscript i denotes the phase and a is the phase fraction.
Eq. (A7) can be re-arranged [44] as:

@a1

@t
þ5 � ða1UÞ þ 5 � a1ð1� a1ÞUrð Þ ¼ 0; ðA8Þ

where volumetric velocity U is defined as U ¼ a1U1 þ a2U2 and a
relative (‘compression’) velocity Ur is defined as Ur ¼ U1 � U2. The
third term in Eq. (A8) is an artificial compression term which is only
active in the thin interface region because of the multiplication
term a1ð1� a1Þ. As such, it does not affect the solution significantly
outside this region.

For compressible flow, Eq. (A2) can be re-written as:

@ai

@t
þ5 � aiUið Þ ¼ � ai

qi
:
Dqi

Dt
: ðA9Þ

We can rewrite the relation between density and pressure given by
Eq. (A5) as:
Dqi

Dt
¼ wi

DP
Dt

; ðA10Þ

which can be inserted into Eq. (A9) to get:

@ai

@t
þ5 � aiUið Þ ¼ �aiwi

qi
:
DP
Dt

: ðA11Þ

By adding equations for each phase in Eq. (A11), the divergence of
the volumetric velocity U can be calculated as

5 � U ¼ � a1w1

q1
þ a2w2

q2

� �
DP
Dt

: ðA12Þ

The L.H.S. of Eq. (A11) is the same as that of Eq. (A7) and, therefore,
can be re-arranged as in Eq. (A8). We can add and subtract the term
a1 5 �U to the R.H.S. of Eq. (A11) (which is treated as a source term).
Then the equation for phase continuity of an compressible flow can
be written as:

@a1

@t
þ5 � ða1UÞ þ 5 � a1ð1� a1ÞUrð Þ ¼ a1ð1� a1Þdgdt þ a1 5 �U; ðA13Þ

where dgdt ¼ w2=q2 � w1=q1ð ÞDP
Dt

:

The L.H.S. of Eq. (A13) is identical to the L.H.S of Eq. (A8) and the
details of the numerical implementation can be found in [41,42].
The R.H.S. of Eq. (A13) is treated as the source term. Implementa-
tion of the source term in OpenFOAM (which can be implicit or ex-
plicit) is explained in the Programmer’s Guide [45].

The overall numerical procedure for solving the governing
equations is similar to that used in the interFoam solver, detailed
description of which can be found in Rushe [42] and Deshpande
et al. [41]. An additional outer correction loop is required in ‘com-
pressibleInterFoam’ to accommodate compressibility effects.
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