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Slow-liner Magnetized Target Fusion (MTF)

Linus concept (Naval Research Laboratory, 1970s)

» Compression of a magnetized DT plasma by a conducting liquid metal liner
» Mechanical or pneumatic acceleration of liquid metal
» Initial plasma size of order meters

» Compression time of order milliseconds

References
» Robson A.E. (1982) “The Linus Concept”. In: Brunelli B., Leotta G.G. (eds)
Unconventional Approaches to Fusion. Springer, Boston, MA.

» Michel Laberge, “Magnetized Target Fusion with a Spherical Tokamak”, Journal
of Fusion Energy 38 (2019) 199-203.
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Fusion Demonstration Plant (FDP)

» General Fusion is designing a 70% scale machine

» Spherically converging liquid lithium liner compressing deuterium plasma
» Initial Ri. = 1.5m. Final Ry, = 0.2m. Radial compression ratio C ~ 8.
» Compression time t. =~ 3.8 ms

» MHD simulations are based on the following geometry:

liquid Li

3 R(m)
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MHD simulation of plasma compression by resistive liner

Code used for 2D and 3D MHD simulation
» Versatile Advection Code (VAC) by Gabor Téth [University of Michigan]
» Finite-volume cell-centered code, curvilinear grid

» Additional features introduced at General Fusion for MTF simulation

Physics included in the simulation

» Compression: predetermined time-dependent meshes for plasma and metal
» Resistive MHD in plasma with T-dependent resistivity

» Physical parallel heat transport

» Constant cross-field transport: x; = 4m?/s, xe = 9m?/s

» Resistive MHD in metal, prescribed flow, flux diffusion and advective flux shearing
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Understanding MHD effects in the liner

Evolution of poloidal flux field ¢)(r, z) has diffusive and advective nature:

oY
57 = DAY —v- vy

Diffusive nature

» Resistivity of liquid lithium: 7 ~ 2.8 x 10~7 Qm gives D = 1/ug ~ 0.22m? /s

Advective nature

» Liquid metal drags ¢ with the liquid velocity v
» This results in flux spreading in converging liquid metal flow!

!Insight due to Ivan Khalzov (General Fusion)
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Magnetic flux spreading in collapsing liner
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MHD simulation snapshots, initial and final time

Gray: liquid lithium. Copper: solid center conductor. Heat map: plasma temperature.
Dark contours: 9 (r, z), bright contour: separatrix (LCFS).
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Magnetic fluxes versus time during compression
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Poloidal flux, in webers, W(r,z) = 2mi(r, z)

» Blue: V(t) is poloidal flux linked by
magnetic axis, nearly constant due to good
plasma conductivity

> : Wy (t), poloidal flux linked by
separatrix (i.e., soaked into the liner)

» Poloidal flux enclosed in the plasma is
Vo — W,

Toroidal flux ® = [B,(r,z) dr dz

» Black: toroidal flux ®y(t) in the entire
plasma domain

» Red: toroidal flux ®,q(t) enclosed by the
separatrix
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Safety factor characteristics versus time during compression
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Conclusions

Successful 2D MHD compression simulations with flux soak

» Approximately 30% of poloidal flux soaks into wall (agrees with 1D code)
» Remaining q profile has low shear, low qgs (trimmed initial profile)
» Final T, =12keV, Te =7keV at C ~ 8

Interesting effects of flux soak for slow-liner MTF

» Unusual g profile, potentially reversed shear, nearly-single helicity
(depending on initial q profile)
» Loss of plasma and current to wall may enhance plasma-wall interaction

> Next steps: stability analysis and 3D simulation
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