Consequences of Flux Diffusion in a Liner Compression Fusion System

Talk APS-DPP 2020 JO09.00006 Consequences of Flux Diffusion in a Liner Compression Fusion System

Contributors: Meritt Reynolds (presenting) Sandra Barsky Aaron Froese

Special thanks to: Ivan Khalzov

Slow-liner Magnetized Target Fusion (MTF)

Linus concept (Naval Research Laboratory, 1970s)

- ► Compression of a magnetized DT plasma by a conducting liquid metal liner
- Mechanical or pneumatic acceleration of liquid metal
- Initial plasma size of order meters
- Compression time of order milliseconds

References

- Robson A.E. (1982) "The Linus Concept". In: Brunelli B., Leotta G.G. (eds) Unconventional Approaches to Fusion. Springer, Boston, MA.
- Michel Laberge, "Magnetized Target Fusion with a Spherical Tokamak", Journal of Fusion Energy 38 (2019) 199–203.

Fusion Demonstration Plant (FDP)

- ► General Fusion is designing a 70% scale machine
- Spherically converging liquid lithium liner compressing deuterium plasma
- ▶ Initial $R_{\rm fc} = 1.5 \,\mathrm{m}$. Final $R_{\rm fc} = 0.2 \,\mathrm{m}$. Radial compression ratio $C \approx 8$.
- Compression time $t_c \approx 3.8 \, {
 m ms}$
- MHD simulations are based on the following geometry:

MHD simulation of plasma compression by resistive liner

Code used for 2D and 3D MHD simulation

- ► Versatile Advection Code (VAC) by Gábor Tóth [University of Michigan]
- ► Finite-volume cell-centered code, curvilinear grid
- ► Additional features introduced at General Fusion for MTF simulation

Physics included in the simulation

- ► Compression: predetermined time-dependent meshes for plasma and metal
- ▶ Resistive MHD in plasma with *T*-dependent resistivity
- Physical parallel heat transport
- Constant cross-field transport: $\chi_i = 4 \text{ m}^2/\text{s}$, $\chi_e = 9 \text{ m}^2/\text{s}$
- ► Resistive MHD in metal, prescribed flow, flux diffusion and advective flux shearing

Understanding MHD effects in the liner

Evolution of poloidal flux field $\psi(r, z)$ has diffusive and advective nature:

$$\frac{\partial \psi}{\partial t} = D\Delta^* \psi - \mathbf{v} \cdot \nabla \psi$$

Diffusive nature

• Resistivity of liquid lithium: $\eta \approx 2.8 \times 10^{-7} \,\Omega\,\mathrm{m}$ gives $D = \eta/\mu_0 \approx 0.22\,\mathrm{m}^2/\mathrm{s}$

Advective nature

- $\blacktriangleright\,$ Liquid metal drags ψ with the liquid velocity ${\bf v}$
- ▶ This results in flux spreading in converging liquid metal flow¹

¹Insight due to Ivan Khalzov (General Fusion)

Magnetic flux spreading in collapsing liner

Here we are showing the advective effect

- Cell volume preserved
- Cell thickness increases
- Soaked flux lags interface (flux shearing)
- ► Increases B contrast with plasma
- Enhances soak from plasma when
 D \neq 0

red contours: poloidal flux in liquid

MHD simulation snapshots, initial and final time

Gray: liquid lithium. Copper: solid center conductor. Heat map: plasma temperature. Dark contours: $\psi(r, z)$, bright contour: separatrix (LCFS).

$$T_{i} = 12 \text{ keV}, T_{e} = 7 \text{ keV}, C \approx 8$$

$$t = 3773 \text{ us}$$

$$0.2$$

$$0.1$$

$$0.2$$

$$0.1$$

$$0.2$$

$$0.1$$

$$0.2$$

$$0.1$$

$$0.2$$

$$0.1$$

$$0.2$$

$$0.3$$

$$0.2$$

$$0.1$$

$$0$$

$$0.1$$

$$0.2$$

x (m)

Magnetic fluxes versus time during compression

Poloidal flux, in webers, $\Psi(r,z)\equiv 2\pi\psi(r,z)$

- Blue: Ψ₀(t) is poloidal flux linked by magnetic axis, nearly constant due to good plasma conductivity
- Green: Ψ_x(t), poloidal flux linked by separatrix (i.e., soaked into the liner)
- \blacktriangleright Poloidal flux enclosed in the plasma is $\Psi_0 \Psi_x$

Toroidal flux $\Phi \equiv \int B_{\varphi}(r,z) dr dz$

- Black: toroidal flux Φ_{tot}(t) in the entire plasma domain
- Red: toroidal flux Φ_{encl}(t) enclosed by the separatrix

Safety factor characteristics versus time during compression

- q profile in interior of plasma does not evolve much because $t_c \ll \tau_B$
- high q flux surfaces lost into the wall
- remaining plasma is lower magnetic shear
- final state nearly single-helicity

Conclusions

Successful 2D MHD compression simulations with flux soak

- ► Approximately 30% of poloidal flux soaks into wall (agrees with 1D code)
- Remaining q profile has low shear, low q₉₅ (trimmed initial profile)
- ▶ Final $T_i = 12 \, \mathrm{keV}$, $T_e = 7 \, \mathrm{keV}$ at $C \approx 8$

Interesting effects of flux soak for slow-liner MTF

- Unusual q profile, potentially reversed shear, nearly-single helicity (depending on initial q profile)
- ► Loss of plasma and current to wall may enhance plasma-wall interaction
- ► Next steps: stability analysis and 3D simulation

General Fusion talks and posters at APS DPP 2020

Mon, 2-5pm:	Aaron Froese, D. Brennan, S. Barsky, M. Reynolds, Z. Wang, M. Laberge
CP19.22	Effects on Stable MHD Region of a Magnetized Target Plasma Compression
Tues, 9:30-12:30: GO13.8	Stephen Howard, A. Mossman, W. Zawalski, D. Froese Plasma-wall interaction on the SLiC spherical tokamak device with large-area, dynamic liquid lithium free surface
Tues, 2-5pm	Meritt Reynolds
JO09.6	Consequences of Flux Diffusion in a Liner Compression Fusion Reactor
Tues, 2-5pm:	Cody Moynihan, S. Stemmley, A. de Castro, J. Zimmermann, D. Ruzic
JP19.11	Design and Initial Results from the Dynamic Lithium Corrosion Test Bed
Mon, 2-5pm:	Paria Makaremi-Esfariani, Peter de Vietien
CP19.21	Coupled CFD/MHD Simulations of Plasma Compression by Resistive Liquid Metal
Wed, 2-5pm: PP12.15	Ivan Khalzov, Ryan Zindler, Michel Laberge 2D Lagrangian Code for Resistive Evolution of Plasma Equilibrium and Its Application to MTF Studies at General Fusion
Fri, 9:30-12:30:	Kelly Epp <i>et al.</i>
ZP07.11	Confinement Physics on Plasma Injector 3