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Slow-liner Magnetized Target Fusion (MTF)

Linus concept (Naval Research Laboratory, 1970s)

I Compression of a magnetized DT plasma by a conducting liquid metal liner

I Mechanical or pneumatic acceleration of liquid metal

I Initial plasma size of order meters

I Compression time of order milliseconds

References

I Robson A.E. (1982) “The Linus Concept”. In: Brunelli B., Leotta G.G. (eds)
Unconventional Approaches to Fusion. Springer, Boston, MA.

I Michel Laberge, “Magnetized Target Fusion with a Spherical Tokamak”, Journal
of Fusion Energy 38 (2019) 199–203.
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Fusion Demonstration Plant (FDP)

I General Fusion is designing a 70% scale machine

I Spherically converging liquid lithium liner compressing deuterium plasma

I Initial Rfc = 1.5 m. Final Rfc = 0.2 m. Radial compression ratio C ≈ 8.

I Compression time tc ≈ 3.8 ms

I MHD simulations are based on the following geometry:
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MHD simulation of plasma compression by resistive liner

Code used for 2D and 3D MHD simulation

I Versatile Advection Code (VAC) by Gábor Tóth [University of Michigan]

I Finite-volume cell-centered code, curvilinear grid

I Additional features introduced at General Fusion for MTF simulation

Physics included in the simulation

I Compression: predetermined time-dependent meshes for plasma and metal

I Resistive MHD in plasma with T -dependent resistivity

I Physical parallel heat transport

I Constant cross-field transport: χi = 4 m2/s, χe = 9 m2/s

I Resistive MHD in metal, prescribed flow, flux diffusion and advective flux shearing
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Understanding MHD effects in the liner

Evolution of poloidal flux field ψ(r , z) has diffusive and advective nature:

∂ψ

∂t
= D∆∗ψ − v · ∇ψ

Diffusive nature

I Resistivity of liquid lithium: η ≈ 2.8× 10−7 Ω m gives D = η/µ0 ≈ 0.22 m2/s

Advective nature

I Liquid metal drags ψ with the liquid velocity v

I This results in flux spreading in converging liquid metal flow1

1Insight due to Ivan Khalzov (General Fusion)
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Magnetic flux spreading in collapsing liner

Earlier Later

Here we are showing the
advective effect

I Cell volume preserved

I Cell thickness increases

I Soaked flux lags interface
(flux shearing)

I Increases B contrast with plasma

I Enhances soak from plasma when
D 6= 0

red contours: poloidal flux in liquid
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MHD simulation snapshots, initial and final time
Gray: liquid lithium. Copper: solid center conductor. Heat map: plasma temperature.
Dark contours: ψ(r , z), bright contour: separatrix (LCFS).

Ti = Te = 0.4 keV, C = 1 Ti = 12 keV, Te = 7 keV, C ≈ 8
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Magnetic fluxes versus time during compression

Ψ0

Ψx

Φencl

Φtot

Poloidal flux, in webers, Ψ(r , z) ≡ 2πψ(r , z)

I Blue: Ψ0(t) is poloidal flux linked by
magnetic axis, nearly constant due to good
plasma conductivity

I Green: Ψx(t), poloidal flux linked by
separatrix (i.e., soaked into the liner)

I Poloidal flux enclosed in the plasma is
Ψ0 −Ψx

Toroidal flux Φ ≡
∫
Bϕ(r , z) dr dz

I Black: toroidal flux Φtot(t) in the entire
plasma domain

I Red: toroidal flux Φencl(t) enclosed by the
separatrix
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Safety factor characteristics versus time during compression

q0, qmin

q95

I q profile in interior of plasma does not
evolve much because tc � τB

I high q flux surfaces lost into the wall

I remaining plasma is lower magnetic shear

I final state nearly single-helicity
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Conclusions

Successful 2D MHD compression simulations with flux soak

I Approximately 30% of poloidal flux soaks into wall (agrees with 1D code)

I Remaining q profile has low shear, low q95 (trimmed initial profile)

I Final Ti = 12 keV, Te = 7 keV at C ≈ 8

Interesting effects of flux soak for slow-liner MTF

I Unusual q profile, potentially reversed shear, nearly-single helicity
(depending on initial q profile)

I Loss of plasma and current to wall may enhance plasma-wall interaction

I Next steps: stability analysis and 3D simulation
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