generalfusion®

INTRODUCTION

- One-dimensional (1D) MHD code is developed in General Fusion (GF) for coupled plasma-liner simulations in magnetized target fusion (MTF) systems.
- The main goal of the code is to provide a simple tool for searching optimal parameters of MTF reactor, in which spherical liquid metal liner compresses compact toroid (CT) plasma.
- The code uses Lagrangian specification for both liner and plasma with self-consistent description of poloidal and toroidal magnetic fields. Different transport and liner motion models are implemented, this allows for comparison with ongoing GF experiments.
- We performed a series of parameter scans in order to establish the underlying dependencies of MTF system and find the optimal GF reactor prototype design point.

MODEL

Geometry

Plasma Equations

Axisymmetric magnetic field in plasma:

 $\mathbf{B} = \nabla \psi(a) \times \nabla \phi + F(a) \nabla \phi$

Assuming fast (Alfvenic time-scale) equilibration, plasma satisfies the Grad-Shafranov equation at every moment of compression:

 $\left\langle \Delta^* \psi \nabla \psi + F \nabla F + \mu_0 R^2 \nabla (p_e + p_i) \right\rangle_{\psi} = 0$

Dynamical equations are written in terms of passive scalars – quantities that are transferred passively with plasma shells and do not change in the absence of diffusion and sources/sinks of energy. They are: poloidal flux ψ , toroidal flux Φ , electron and ion entropies, s_e and s_i . Angled brackets denote appropriate averaging along flux surface.

$$\frac{d\tau}{dt} = -\mu_0 \eta \langle Rj_{tor} \rangle_{\psi}
\frac{d\Phi}{dt} = -2\pi\mu_0 \eta \langle aj_{pol} \rangle_{\psi}
\frac{ds_e}{dt} = \frac{2}{3n^{5/3}} \left\langle \nabla \cdot (\kappa_e \nabla T_e) + \mu_0 \eta (j_{pol}^2 + j_{tor}^2) - \frac{3m_e}{m_i} \frac{Zn(T_e - T_i)}{\tau_{ei}} + Q_{extra} \right\rangle_{\psi}
\frac{ds_i}{dt} = \frac{2}{3n^{5/3}} \left\langle \nabla \cdot (\kappa_i \nabla T_i) + \frac{3m_e}{m_i} \frac{Zn(T_e - T_i)}{\tau_{ei}} \right\rangle_{\psi}$$

Components of current density:

$$j_{tor} = -\frac{1}{\mu_0} \frac{\Delta^* \psi}{R}, \quad j_{pol} = -\frac{1}{\mu_0} \frac{F'_a}{R}$$

Definition of toroidal flux F and inductance of toroidal shell L_i :

$$F = \frac{d\Phi}{dL}, \qquad L_j = \int_0^{a_j} \int_0^{2\pi} \frac{ad\theta da}{R_j + a\cos\theta} = 2\pi \left(R_j - \sqrt{R_j^2 - a_j^2}\right)$$

Density and volume of *j*-th toroidal plasma shell (total number of particles dN_i within each shell is conserved during dynamics):

$$n_j = \frac{dN_j}{dV_j}, \qquad dV_j = 2\pi^2 \left(a_j^2 R_j - a_{j-1}^2 R_{j-1}\right)$$

Thermodynamical quantities:

$$p_e = s_e n^{5/3}, \quad p_i = s_i n^{5/3}$$
$$T_e = \frac{p_e}{Zn}, \qquad T_i = \frac{p_i}{n}$$

The last term Q_{extra} in the electron entropy equation denotes other possible sorces and sinks of energy, such as heating due to collisions with fusion alpha-particles and radiative losses due to Bremsstrahlung.

One-Dimensional MHD Simulations of MTF Systems with Compact Toroid Targets and Spherical Liners

I. Khalzov, R. Zindler, S. Barsky, M. Delage, M. Laberge General Fusion Inc., Burnaby, British Columbia, Canada 59th Annual Meeting of the APS Division of Plasma Physics, Milwaukee, Wisconsin, October 23–27, 2017 UP11.00129 Plasma Transport Coefficients **NON-COMPRESSION DYNAMICS** Transverse Spitzer resistivity (magnetic diffusivity): $\eta \left| \frac{\mathrm{m}^2}{\mathrm{s}} \right| = 820 Z \ln \Lambda (T_e[\mathrm{eV}])^{-3/2}$ Thermal conductivities: $\kappa_e \left[\frac{\mathrm{J}}{\mathrm{eV\,m\,s}} \right] = Z \frac{3}{2} 1.6 \times 10^{-19} n_0 [\mathrm{m}^{-3}] \chi_e \left[\frac{\mathrm{m}^2}{\mathrm{s}} \right]$ cm, and center shaft electrode is cylindrical with R_s =1.3 cm. $\kappa_i \left[\frac{\mathbf{J}}{\mathbf{eV}\,\mathbf{m}\,\mathbf{s}} \right] = \frac{3}{2} \, 1.6 \times 10^{-19} n_0 [\mathrm{m}^{-3}] \chi_i \left[\frac{\mathrm{m}^2}{\mathrm{s}} \right]$ Here n_0 is the initial peak ion density, χ_e and χ_i are the electron and ion thermal $\chi_{p}=250 \text{ m}^{2}/\text{s}$ and increased Spitzer resistivity by a factor of 3.5. diffusivities. All these quantities in present simulations are assumed to be constant, although other choices are available (such as classical Braginskii transport). Electron-ion collisional time (for thermal equilibration) emperature. Spector1 shot 18532 T, AXUV $\tau_{ei}[\mathbf{s}] = \frac{3.44 \times 10^{11} (T_e[\text{eV}])^{3/2}}{Z^2 \ln \Lambda \, n[\text{m}^{-3}]}$ _ _ T, ion Doppler Peak T_e, simulatio – – Peak T, simulation **Liner Equations** Axisymmetric magnetic field in liner (r – spherical radius, θ – polar angle): $\mathbf{B} = \nabla \psi(r, \theta) \times \nabla \phi + F(r, \theta) \nabla \phi$ Equation of radial motion (here $R=r \sin \theta - cylindrical radius)$: $\rho \frac{dv_r}{dt} = \rho \left\langle \frac{v_{tor}^2}{r} \right\rangle_{\theta} - p_r' - \left\langle \frac{\Delta^* \psi \, \psi_r'}{R^2} + \frac{FF_r'}{R^2} \right\rangle_{\theta} + \left(\frac{\nu \rho}{r^2} (r^2 v_r)_r' \right)_r'$ 0.4 0.6 0.2 t, s t. s Simulated temperatures for different —— Peak Τ_ρ, χ_i=0.1 m²/s Dynamical equations for passive scalars – angular momentum, poloidal flux ψ , toroidal - - - Peak T_i, χ_i =0.1 m²/s flux Φ and entropy s. Angled brackets denote appropriate averaging in polar angle θ Peak T_a, $\chi_i = 1 \text{ m}^2/\text{s}$ - - - Peak T_i , $\chi_i = 1 \text{ m}^2/\text{s}$ (along spherical surface). Peak T_e, χ_i =10 m²/s - - Peak T_i, χ_i =10 m²/s $\frac{a}{dt} \langle Rv_{tor} \rangle_{\theta} = 0$ $-\mu_0\eta \langle Rj_{tor} \rangle_{ m A}$ ~~~!~~~~+~~ $-\pi\mu_0\eta \langle rj_{pol}\rangle_{\theta}$ 0.4 0.8 0.4 0.6 0.2 Figure 2: Typical Spector1 shot and its 1D simulation. $\frac{ds}{dt} = \frac{(\gamma - 1)}{\rho^{\gamma}} \left\langle \nabla \cdot (\kappa \nabla T) + \mu_0 \eta \left(j_{pol}^2 + j_{tor}^2 \right) + \nu \rho \left(\frac{(r^2 v_r)_r'}{r^2} \right)^2 \right\rangle_{\alpha}$ Components of current density: $j_{tor} = -\frac{1}{\mu_0} \frac{\Delta^* \psi}{R}, \quad j_{pol} = -\frac{1}{\mu_0} \frac{F'_r}{R}$ in experiment) they must have thermal diffusivity of $\chi_i < 10 \text{ m}^2/\text{s}$.

Definition of toroidal flux Φ in liner: F' = ----

Density and volume of *j*-th spherical shell (total mass within each shell is conserved):

 πdr

$$\rho_j = \frac{dM_j}{dV_j}, \qquad dV_j = \frac{4\pi}{3} \left(r_j^3 - r_{j-1}^3 \right)$$

In present simulations thermal conductivity κ and magnetic diffusivity (resistivity) η of liner are assumed to be constant, although other choices are available in the code based on look-up tables for specific temperature and pressure intervals.

Two models are available for the liquid metal equation of state: compressible and incompressible.

<u>Compressible model</u> uses Mie-Grueneisen equation of state⁽¹⁾ with "cold" (elastic) p_c and thermal p_{τ} components of pressure:

$$p_c = \frac{\rho_0 c_0^2}{k} \left(\left(\frac{\rho}{\rho_0} \right)^{\kappa} - 1 \right), \quad p_T = s \rho^{\gamma}$$
$$p = p_c + p_T, \quad T = T_0 + \frac{p_T}{(\gamma - 1)\rho c_V}$$

where ρ_0 – initial density, T_0 – initial temperature, c_0 – initial speed of sound, k – hardening power, γ – specific heat ratio, c_{γ} – heat capacity at constant volume.

Table 1: Properties of liquid metals proposed for liner

Liquid metal	$T_0^{melt},{\rm K}$	$ ho_0,{ m kg}/{ m m}^3$	$c_0, { m km/s}$	$c_V,~{ m J/kg}{\cdot}{ m K}$	$\kappa, \mathrm{W/m}{\cdot}\mathrm{K}$	$\eta,\mathrm{m/s^2}$	γ	k
Lithium	453.6	516	4.5	4169	44.0	0.20	1.85	1
Lead	600.6	10678	2.0	148	14.8	0.76	3.77	3

Incompressible model assumes constant density and divergence-free velocity (dot denotes time derivative):

$$=\rho_0, \qquad v_r = \frac{\dot{r}_{in}r_{in}^2}{r^2}$$

This leads to simplified equation of liner radial motion (integrated from r_{in} to r_{out}):

$$\left(\ddot{r}_{in}r_{in}+2\dot{r}_{in}^2\right)\left(1-\frac{r_{in}}{r_{out}}\right)-\frac{\dot{r}_{in}^2}{2}\left(1-\frac{r_{in}^4}{r_{out}^4}\right)=\int_{r_{in}}^{r_{out}}\left\langle\frac{v_{tor}^2}{r}\right\rangle_{\theta}dr-\frac{\Delta P}{\rho_0}$$

$$\Delta P = P_{out} + \int_{r_{in}}^{r_{out}} \left\langle \frac{\Delta^* \psi \, \psi'_r}{R^2} + \frac{FF'_r}{R^2} \right\rangle_{\theta} dr, \quad r_{out}^3(t) - r_{in}^3(t) = r_{out}^3(0) - r_{in}^3(0)$$

Liner motion is determined by combined effect of centrifugal force, driving gas pressure P_{out} and magnetic pressure drop between inner and outer liner surfaces.

- As a validation test we applied the developed code to simulate non-compression dynamics in SPECTOR1 – one of General Fusion's plasma experiments.
- SPECTOR1 is a spherical tokamak with plasma formed by Marshall gun discharge into pre-existing toroidal field. Flux conserver has spherical shape with radius r_{μ} =19
- A typical SPECTOR1 shot with its simulation is shown on Fig. 2. As initial input for simulation we used the following parameters: uniform density $n_0=10^{14}$ cm⁻³, total poloidal flux in plasma ψ_0 =26.5 mWb, shaft current I_s =0.765 MA. To match the experimental poloidal magnetic field decay we chose electron thermal diffusivity of

Change of ion thermal diffusivity χ_i changes only ion temperature dynamics, but neither electron temperature nor magnetic field are affected much. From our results it follows that in order for ions to have temperature plateau at $T_i \sim 100 \text{ eV}$ for $\sim 500 \mu \text{s}$ (as observed)

PROTOTYPE PARAMETERS SCANS

GF Prototype program is aimed at achieving peak ion temperature of T=10 keV with stable compression of magnetized plasma by liquid metal liner in repeatable manner. The goal of present study is to use the developed 1D code to search for optimal design point of GF Prototype device by performing scan of plasma and liner parameters.

No-plasma Compression

First, we explore the rotational stabilization of liner compression without plasma. Assumptions:

- incompressible liner is made of liquid lithium with density $\rho_0 = 516 \text{ kg/m}^3$
- part of liner between $r_0=1.5$ m and r_{rot} is rotating with initial angular velocity Ω_0
- outer surface of liner is pushed by driving gas at constant pressure $P_{out}=200$ atm • initial shaft current I creates toroidal field, there is no poloidal field in the system
- toroidal flux is conserved during compression, corresponding magnetic pressure is applied to inner surface of liner
- inner surface of liner is stabilized against Rayleigh-Taylor instability if ⁽²⁾ $\ddot{r}_{in} < \Omega_{in}^2 r_{in}$

Figure 3: Rayleigh-Taylor stability limits and no-plasma compression trajectories.

generalfusion®

Plasma Compression

Scan of multi-parameter Prototype physical space is currently a research in progress. In

initial plasma Grad-Shafranov equilibrium has shaft current and total poloidal flux that

Fig. 4 we present samples of obtained results.

Assumptions:

The parameters scans show strong dependence of achievable ion temperature at compression on thermal diffusivities of both ions and electrons.

For considered range of parameters, our results suggest that peak ion temperature of T=10 keV can be obtained by performing ~7x radial compression of plasma with original radius $r_0=1.5$ m if $\chi_i < 5$ m²/s and $\chi_c < 200$ m²/s.

CONCLUSIONS

- 1D MHD code was developed in General Fusion for simulating coupled dynamics of plasma and liquid metal liner in MTF systems of certain geometry.
- The code was validated against experimental data. In particular, thermal diffusion coefficients and resistivity in physical model were adjusted to match magnetic field and temperature measurements.
- The code was used to scan the space of physical parameters to search for optimal design point of GF Prototype device. This is still work in progress.
- Under reasonable physical assumptions about plasma properties (based on comparison with experiments), our preliminary results suggest that ion temperature of 10 keV can be achieved in 7x radial compression of plasma with initial radius of 1.5 m.
- Because of 1D nature, the code does not capture many important effects present in real plasma-liner system such as deviation of liner from spherical shape, difference of forces in polar and equatorial regions, etc. Eventually GF Prototype project will require the development of (or use of existing, if available) 2D code for the liner-plasma simulations.

REFERENCES

1) Ya. B. Zeldovich, Yu. P. Rayzer "Physics of shock waves and high-temperature" hydrodynamic phenomena", Moscow: Nauka, 1966 2) P.J. Turchi "Imploding liner compression of plasma: concepts and issues", IEEE Transactions on Plasma Science, Vol. 36, No. 1, 2008