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% ﬂf Introduction

> International Context
What activities are ongoing?
What are other alternative concepts?

» Canadian Context
- Past/ Current Experience?
- Future Efforts for Canada?
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%ﬁg International Context (1/10)

> Last ten years have seen a surge in surge in the
Investigation of alternative approaches and
technologies for fusion energy.

» Advances in plasma physics, electronics and digital
controls, computer simulation, and materials have
opened up new avenues for developing fusion power
plants.

> Building on old concepts originally developed decades
ago, but with some modifications and innovations
making use of new technologies and new knowledge.
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> New ideas emerging based on modern understanding of
plasma physics.

> New business models and strategies for research and
development
- Private companies attracting millions of dollars of
Investment.
- Building world-class teams and research centers.

- Working closely with publicly-funded institutions.
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%ﬂg International Context (3/10)

> Magnetized Target Fusion (MTF) / Magneto-Inertial Fusion (MIF)

Magnetic Fusion (MF) systems
= Low density, steady-state systems; ¢
= Confine for relatively long period of time.
= Cost of confining large plasma volumes dominates (field coils).

- Inertial Fusion (IFE) systems
= High density, pulsed, small plasma volumes
= Confine for very short period.
= Cost of the very high power driver systems (such as lasers).

- MTF spans the intermediate regime between MF and IFE
= Small plasmas (compact torus) confined by magnetic fields.
= Rapid compression for heating to fusion conditions.

= Cost of confinement and the compression driver can be
dramatically lower.
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> Magnetized Target Fusion / Magneto-Inertial Fusion
- Intermediate region between MF and ICF.
- Potential for lower costs for confinement and driver systems.
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%ﬂ J International Context (5/10)

> Magnetized Target Fusion (MTF) / Magneto-Inertial Fusion (MIF)

MTF concepts trace back to research first undertaken in the
1970s (LINUS); less explored.

Recent efforts are aiming to close this gap.

In Canada, General Fusion, is undertaking pioneering research
= Explore the behaviour of compressed magnetized plasmas.

« |In 2015, in the USA:

= DOE Advanced Research Projects Agency for Energy (ARPA-E)
launched their ALPHA program,.

= Funding nine different groups pursuing variations of MTF:
= Helion Energy in Seattle,
= Los Alamos National Laboratory
= Swarthmore College, University of California.
= Sandia National Laboratory, Magnetic Liner Inertial Fusion

- Chinainvestigating MTF/MIF systems.
= Chinese Academy of Engineering Physics — similar to LANL wc%rk.
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> Other alternative concepts for fusion energy have been proposed
periodically over the past decades

Received much lower support than mainstream concepts.

> Diverse range of fusion concepts have re-emerged
- Attracting investment in both private/public sectors.
- Leveraging funding from various sources.

> Alternative concepts share a common themes
- Accepting risk of new science and technology.
- Goal of developing a commercially-viable fusion power plant.
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> Tri Alpha Energy (Irvine, California)
- https://trialphaenergy.com/
- Variant of Field-Reversed Configuration (FRC) e
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> Lockheed Martin’s Skunkworks (USA) division

- http://www.lockheedmartin.com/us/products/compact-fusion.html

- http:/ffusion4freedom.us/pdfs/McGuireAPS.pdf

- Compact fusion with a new magnetic fusion configuration.

- Combines features of several magnetic confinement approaches.
- Magnetic Mirror / Floating Ring / Multipole / Surmac System
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. International Context (9/10)

Wt game

> EMC2 (USA) http://www.emc2fusion.org/
- Multiple intersecting magnetic cusps / Polywell.
- High stability system confines electrons
- Electron cloud electrostatically confine fusion fuel ions (D, T)
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International Context (10/10)

> First Light Fusion (UK)

- http://firstlightfusion.com/
- Pursuing a new inertial fusion concept.

- Use of shock waves to compress plasma target asymmetrically.
= High-speed project impacts container of fluid to create shockwave.
= Cavity collapse method.

2:-0.24 ps . 030 us

8: 3.00ps

10: 4.08 us
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>

iy Other Alternative Concepts (25+)

Electromagnetic Pinch Devices (Pulsed):

Z-Pinch, Extrap (External Ring Trap) Concept, Dense Plasma Focus (DPF),
Linear Theta Pinch, Toroidal Theta Pinch

Electrostatic / Magneto-static Confinement Devices
Inertial Electrostatic Confinement (IEC) / Fusors, Penning Traps, Polywells.

Magnetic Field Coil Confinement Systems (mostly steady-state)

Magnetic Mirrors, Tandem Magnetic Mirrors, Field-Reversed Configuration
(FRC) Mirrors, lon Ring Compressor (IRC) System — pulsed, Migma System,
Magnetic Cusps, Multi-pole and Surmac Systems

Magneto-Inertial Fusion Concepts
LINUS Concept, Magnetized Target Fusion (MTF), Acoustically Driven MTF (GF)
Large Linear Systems

Laser-heated Solenoid, Cusp-Ended Solenoid Reactor (CESR), Electron beam
Heated Multiple Mirror (EBMM) Reactor

Large Toroidal Systems
Reversed Field Pinch, ELMO Bumpy Torus.

Compact Torus Devices / Compact Tokamak Variants

Spheromak, Spherical Tokamak.
13



Canadian Context (1/7)

> General Fusion (2002-present)

Private research company in Burnaby, BC.

65 employees, more than 50 engineers and scientists.
Acoustically Driven Magnetized Target Fusion (AD-MTF)

Compressed gas-driven pistons compress a conductive liquid metal
metal chamber; compresses magnetized plasma (compact torus).

2nd Largest Private Fusion Research Program in World.
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> General Fusion (2002-present)
Private Investors:

= Cleantech venture capital, Cenovus Energy, Jeff Bezos, sovereign
wealth funds, with over $100M invested to date.

Government funding: ~$20M of capital

= Sustainable Development Technology Canada (SDTC), Scientific
Research and Experimental Development Tax Incentive Program (
SR&ED), Industrial Research Assistance Program (NRC-IRAP).

University involvement since 2014 ($350k invested/ $500k leverage):

= U. Saskatchewan, Simon Fraser U., McGill U., U. Sherbrooke,
TRIUMF (BC), Princeton U. , Queen Mary U. (London, UK).

Other formal and informal research collaborations:
= Queen’s U., DRDC
= LANL, LLNL, U. Washington, MIT.
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N, Canadian Context (3/7)

« GF-MTF Plasma Formation: Enabling Long Lifetimes

* Achieved 2700 us plasma lifespan in 38 cm diameter Generation 2
“SPECTOR” plasma injectors, with temperatures of 500 eV

« Transferring Gen 2 small plasma injector technology to Gen 3 large
injectors. First plasma on Gen 3 “PI3” injector in December 2016.

Generation 1 Generation 2 Generation 3

T

2011-2014 2015-2017

Time Performance Threshold to Enable Fusion
(microseconds) Conditions ~ 2000 microseconds \
400 800
100
A0 Y o |-
2012 2013 2014 2015 2016 today 2017 -YE

/70X Improvement over 5 years
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 GF-MTF Plasma Stability During Compression

« PCS14 (February, 2017): Latest test results
achieved higher and deeper compression

« Why? Changes made prevented the magnetic

generalfusion’

Canadian Context (4/7)

Instabilities seen in previous tests

Compression Ratio HEp

EVOLUTION OF PLASMA STABILITY CONTROL

Relative Magnetic Field Compression (sensor average)

i
| Poloidal field normalized
; at time of first wall movement
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| — PCS2
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PCS 14

Unstable Magnetic Symmetry
Late in Compression
PCS13

©

Stable Magnetic Symmetry
Throughout Compression
PCS14
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. Saskatchewan (2013+)

Canadian Context (5/7)

. Quebec at Montreal (1970s)

Magnetic Cusp ; stable, but leaky. y

Dense Plasma Focus (DPF)

2-kJ prototype; 20-kJ under development.
Potential to use p-'B aneutronic fuel. ®

Scaling laws suggest 300-MJ device required.
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> HOPE Innovations (2011)

- Private research company (Mississauga).
- Investigating variants of X-Pinch, Z-Pinch Devices.
- Intersections of plasma beams.

- Preliminary experiments. aft 6.l o)
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§ ﬂ S Canadian Context (7/7)

> University of Ontario Institute of Technology (UOIT)
- Advanced Plasma Engineering Lab (APEL)

Plasma generation devices.

Plasma simulation studies.

Study of control systems.
Since 2013
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} ﬂ J Future Canadian Efforts (1/4)

 Moving to Integrated GF-MTF
Prototype:

« 2016/17: inflection point in all key
areas of technology development;
confidence to construct integrated
prototype

 Pre-conceptual design now
underway, detailed design concept
toward year-end.

« Prototype goal: achieving fusion
conditions (10 keV), sub-breakeven

 Will operate at low rep-rate (one
shot per day)
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/ Future Canadian Efforts (2/4)
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General Fusion MTF Power Plant Operation

» 3 meter diameter compression vessel filled with liquid lead-lithium, circulated
to form a cavity in the center.

Plasma injector forms plasma into the cavity.

200 piston drivers symmetrically collapse the cavity
« Compressing and heating the plasma

Plasma ignites and fusion energy is absorbed into surrounding lead-lithium
Hot lead-lithium transfers energy
« Standard Rankine steam cycle and generator

R

~100 MWe net output
« Compressed gas driver relatively low cost

« Thick liquid metal wall shields structure from neutron
damage, breeds tritium, extracts energy

* Pulsed approach with plasma-only target (no
manufactured consumables)
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> Other Alternative Fusion Concepts:

»> Construction / operation of smaller-scale devices
University, government, private-sector laboratories.
Magnetized Target Fusion (see previous presentation).

-« Dense Plasma Focus, Z-Pinch / X-Pinch
= Pulsed systems.

- Other alternative concepts
= |EC Devices, Polywells, Magnetic Mirrors, Multi-poles, other variants.
= Steady-state systems.

- Operate with hydrogen, deuterium.
= Operating with tritium will have special and extra licensing requirements.

- Use for testing equipment and components.
= Instrumentation, refuelling, plasma heating, field coils.
- Use measurements also for benchmarking simulation tools.

23
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> Computer simulation of alternative fusion devices
Feasible/suitable for university/academic activities.
= Physics, electrical engineering, applied mathematics.
Develop capability to simulate wide variety of devices.
= Test scaling, test viability.
= Design tool.
- Plasma physics, electro-magnetics, control systems.

= Direct simulation of plasma behavior (particle-in-cell
methods).

= Use of high-speed computing facilities.

- Plasma-material interactions.

- Compare results with peers in international community.
= Expand knowledge base.
= Verify/assess claims made by various groups.

24
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> Opportunity for Canada to work on alternative fusion
reactor concepts.
Support and complement international efforts.
Pursue alternative concepts domestically.

> Key areas for Canada to take leading contributing role:

- Magnetized Target Fusion
= Effort lead by General Fusion
= Support by other institutions in Canada and abroad.

- Smaller-scale experiments for alternative concepts.
= Test component technologies, instrumentation.
= Datato benchmark simulation tools.
- Computer simulations.
= Test behavior and viability of alternative concepts.
= Modified earlier concepts, innovative new concepts.

25
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> Electromagnetic Pinch Devices (Pulsed):
+ Z-Pinch AR
Extrap (External Ring Trap) Concept ™ Tt—
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> Electrostatic / Magnetostatic Confinement Devices
- Inertial Electrostatic Confinement (IEC) / Fusors
- Penning Traps
- Polywells (multiple magnetic cusps)

FIh. 2. Eleciric and magnetic field configurations af the Pen- 29
nang trap,



o WUCLEq,

. 7R
§ ﬂf Other Alternative Concepts (3/12)

W
Yoci gae ¥

49')0

> Magnetic Field Coil Confinement Systems (mostly steady-state)
- Magnetic Mirrors
- Tandem Magnetic Mirrors

lon orbit y 4
Plasma Injector
s‘f“‘r
o
J [ & Coil current
L % “ l’
BASEBALL
/ (YIN.-YANG)
k MAGNET
SOLENOIDAL COIL
N e
Field lines R

Simple Magnetic Mirror

AN
407“". BEAM

CENTRAL CELL . INJECTOR
(INCLUDES PLASMA)

Schematic Diagram of the Tandem Mirror Experiment
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/ Other Alternative Concepts (4/12)

> Magnetic Field Coil Confinement Systems (mostly steady-state)
- Field-Reversed Configuration (FRC) Mirrors —
- lon Ring Compressor (IRC) System — pulsed
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> Magnetic Field Coil Confinement Systems (mostly steady-state)
Migma System
Magnetic Cusps
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Other Alternative Concepts (6/12)

> Magnetic Field Coil Confinement Systems (mostly steady-state)

- Multi-pole and Surmac Systems
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> Magneto-Inertial Fusion Concepts
- LINUS Concept

- Magnetized Target Fusion (MTF)

- Acoustically Driven MTF (General Fusion)

= See earlier presentation.

Energy Cycle

100 MW
. 300 OQutput
S Heat —
e Convert to
‘ Electricity
(33%
efficient)
Q/o l HEQ(

Convert to Mechanical Energy (33% efficient)
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> Large Linear Systems
- Laser-heated Solenoid
- Cusp-Ended Solenoid Reactor (CESR)
- Electron beam Heated Multiple Mirror (EBMM) Reactor

REACTOR
Om 20m 50m

Fig. 1 d - Laser Solenoid Reactor
ﬁ BEACTOR MaDuLES Fig. 1 a - Electron~Beatr1—Heatcd Solenoid Reactor
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> Large Toroidal Systems
- Reversed Field Pinch — pulsed.

Vacuum
Toroidal " ” ¢‘Vessel
Field Coils £~ N
¢ )
} e
Ohmic
S Transformer
Plasma

Poloidal and Vertical
Field Windings
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> Large Toroidal Systems
- ELMO Bumpy Torus (steady state).
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» Compact Torus Devices / Compact Tokamak Variants

- Spheromak

= Pulsed (steady state maybe possible).
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%ﬂ; Other Alternative Concepts (12/12)

CLEAIRE

» Compact Torus Devices / Compact Tokamak Variants
- Spherical Tokamak.
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Ny Supplementary Info

> FYI—-Govt of Canada is seeking public input on the future of
science and “innovation”. Feel free to contribute! These are the
two links for the government consultations:

- 1. Canada’s Fundamental Science Review:
= http://www.examenscience.cal/eic/site/059.nsf/frm-eng/RVOT-AASJILL

- 2. Innovation Agenda consultation:
= http://www.ic.gc.caleic/site/062.nsf/eng/home

> The first oneis the one that the submissions will be private (public
cannot see them and has a expert panel). For the second one the
submissions are public and less technical.

40



Sl CNS-FESTD

> Visit:
> https://cns-snc.ca/lhome
> https://cns-snc.ca/CNS/fusion/

> Join the Canadian Nuclear Society (CNS).
> https://cns-snc.ca/cns/membership/

> Join the Fusion Energy Science and Technology Division (FESTD)

41
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General Fusion _
www.generalfusion.com

Private research company in Burnaby, BC
65 employees, more than 50 engineers and scientists

Pursuing Acoustic Magnetized Target Fusion (MTF)

Compressed gas driven pistons compress magnetized
plasma W|th|n a conductlve metal chamber of I|qU|d metal
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. Magnetized Inertial
Magnetic : .
Confinement Target Fusion Confinement
(MTF) (ICF)
Plasma confinement using Combination of Very fast
large magnetic coils compression and compression using
magnetic confinement high power lasers or
ion beams
Low density:
~10% ions/cm? Medium density: Extreme density:
. : ~1020 ions/cm3 ~102% ions/cm3
Continuous operation
Pulsed: ~10 us Pulsed: <1 ns

(ITER)
(General Fusion) (NIF)
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General Fusion Plant Operation

1. 3 meter diameter compression vessel filled with ;
liquid lead-lithium, circulated to form a cavity in G o
the center. gy . R

2. Plasma injector forms plasm ty - -

3. 200 piston drivers symmetrically collapseghe.. e
cavity, compressing and heating the pla

4. Plasma ignites and fusion energy is absorbed
Into surrounding lead-lithium

5. Hot lead-lithium transfers energy to a standard
rankine steam cycle and generator
~100 MWe net output
Compressed gas driver relatively low cost

Thick liquid metal wall shields structure from neutron damage,
breeds tritium, extracts energy

Pulsed approach with plasma-only target (no manufactured
consumables)

generalfusion’




X GF-MTF Plasma Formation: generaifusion
LS Enabling Long Lifetimes

» Achieved 2700 ps plasma lifespan in 38 cm diameter Generation 2
“‘SPECTOR” plasma injectors, with temperatures of 500 eV

« Transferring Gen 2 small plasma injector technology to Gen 3 large injectors.
First plasma on Gen 3 “PI3” injector in December 2016.

Generation 1 Generation 2 Generation 3

- s ‘ ‘ ol
\ T
5 &
»

10,000

(micr-(I)-ISr:fondS) Performance Threshold to Enable Fusion Conditions
1,400
800
[
100
A0 0 o |-

2012 2013 2014 2015 2016 today 2017 - YE

70X improvement over 5 years
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« PCS14 (February, 2017): Latest test results

achieved higher and deeper compression Unstable Magnetic Symmetry
Late in Compression
« Why? Changes made prevented the PCS13

magnetic instabilities seen in previous tests

EVOLUTION OF PLASMA STABILITY CONTROL .

Relative Magnetic Field Compression (sensor average)

9

Pes 14 Stable Magnetic Symmetry
Throughout Compression
PCS14

i
| Poloidal field normalized
; at time of first wall movement

' — PCS1
| — PCS2
| — PCS3
4 i PCS4
; PCS5
. — PCS7
| — PCS9
3| | — PCS12
| — PCS13
| — PCS14

Compression Ratio HEp
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« 2016/17 has been an inflection point
In all key areas of technology
development and has given
confidence to construct integrated
prototype

* Pre-conceptual design now
underway, detailed design concept
toward year-end

* Prototype goal is achieving fusion
conditions (10 keV), sub-breakeven

* Will operate at low rep-rate (one
shot per day)




s
o
& %
L @,
hj %
0
% &
&
S\
Woergpre P

> Helion

Magnetic compression of merged
FRCs

http://www.helionenergy.com/

https://arpa-e.energy.gov/?qg=site-

page/2016-alpha-annual-meeting

https://www.arpa-

e.enerqgy.gov/?qg=slick-sheet-

project/compression-frc-targets-fusion

S
wis

Engine-

This truck-sized engine can power the grid using fuel that is easy to

obtain and plentiful, its exhaust being ordinary helium gas. It's one of the
safest and cleanest technologies around, and this is how it works

Deuterium fuel

extracted from water, Pulsed magnetic
and helium from the fields accelerate
engine's exhaust, is the plasma into the
injected and heated burr_v ;hambar at over
until it becomes I million mph
a plasma
A strong magnetic IiaIf.:i1
At high temperature the deuterium e compresses the merged
and helium nuclei fuse, releasing plasma to fusion pressure

charged particles that push back on

and temperature, over
the compressing magnetic field

100 million degrees

&

The expanding plasma is directly
t‘ converted into electricity to operate
L the next cycle once a second

The resulting electricity is sent to the grid for safe, baseload power. The

Fusion Engine produces 8 times as much energy as what's put in, and at a
50-megawatt scale can power 40,000 homes for less than $0.04/kWHr
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More Alternative Concepts (2/4)

> U. Washington — Shear-Flow Stabilized Z-Pinch

https://www.arpa-e.enerqy.qov/?qg=slick-sheet-project/flow-z-pinch-fusion

http://www.iccworkshops.org/epr2016/uploads/417/nelson eprl6 zap fuze talk.pdf

http://plasma.physics.wisc.edu/uploadedfiles/journal/Shumlak928.pdf
- Similarities to Dense Plasma Focus
- Cooperation with Lawrence Livermore National Laboratory
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https://www.arpa-e.energy.gov/?q=slick-sheet-project/flow-z-pinch-fusion
http://www.iccworkshops.org/epr2016/uploads/417/nelson_epr16_zap_fuze_talk.pdf
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> Dynomak Concept / University of Washington
Advanced Spheromak Concept
Dynamo current drive.
http://www.sciencedirect.com/science/article/pii/S0920379614002518

020

015
Coil Set | MA-turns
A 16,3 |
. B -5.2
E.(Llo é ‘. 0.4
D -11
E 16.8
o8 F 2.6
Fig 1. Asliced rendering of the dynomak reactor concept, excluding the seconds
POWST conversion cycle. Major Radius [m] 000

Fig. 2. Grad-Shafranov equilibrium with corresponding codl set and currents.
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http://www.sciencedirect.com/science/article/pii/S0920379614002518
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> Plasma Liner Experiment (PLX)
Los Alamos National Laboratory
Magneto-inertial fusion (MIF) with plasma guns (Ar/Xe)

Spherical imploding plasma liner on magnetized plasma target (DT)

http://fire.pppl.gov/fpal0 LANL Wurden.pdf
http://wsx.lanl.qov/talks/FPA2012-Fusion-Research-at-LANL-Wurden-talk.pdf
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http://fire.pppl.gov/fpa10_LANL_Wurden.pdf
http://wsx.lanl.gov/talks/FPA2012-Fusion-Research-at-LANL-Wurden-talk.pdf

