FUSION POWER ASSOCIATES 2016

general fusion

general fusion

MTF Power Plant Concept

MTF Power Plant Concept

Key Features

- Low cost compressed gas driver
- Thick liquid metal blanket
 - Shields structure
 - Extracts heat
 - Breeds tritium
- Pulsed with plasma-only target

PLASMA

INJECTOR

Development Program

Compression System

New piston design completed and undergoing testing

- Much higher drive pressure
- New "launch" system
- Frictionless servo control and independent position measurement

Technology scalable to large piston arrays

Plasma Injector: Recap to end of 2015

Bad curvature in compression one of the suspects for MHD instabilities in compression

Move to new design with better curvature, self-similar compression geometry

SPECTOR (SPhErical Compact TORoid)

SPECTOR forms spheromak and spherical tokamak plasmas by coaxial helicity injection into a flux conserver

Major, minor radius R= 12 cm, a = 8 cm

Vessel radius = 19 cm (interior)

Current in axial shaft ≤ 500 kA [crowbarred] creates pre-existing toroidal field before formation plasma

Density range = 5×10^{19} to 5×10^{20} m⁻³

Poloidal Flux in CT = 30 mWb

Toroidal Flux in CT = 35 mWb

Toroidal plasma current = 250 kA

Total magnetic energy in CT = 120 kJ

SPECTOR: Lab and Field Variants

SPECTOR Diagnostics

Not Shown:

Visible survey spectrometers (x3)

Liquid Scintillator (Gamma + Neutron detector, PSD)

X-ray pinhole camera, with Phantom high speed video

Filtered X-ray photodiodes

Plasma Lifetimes ~2 ms

Plasma Temperatures >400 eV

Lithium Gettering

Plasma Compression System

Compression Geometry

- Design achieves ~4:1 radial compression
- Good shape until very final stages

general fusion

Plasma Compression Results

Next Steps

Three plasma compression tests expected in 1H2017

New large injector design being assembled, first plasma this month

Frictionless servo on new piston undergoing testing

Combine it all: detailed design of integrated system in 2017

Aurora

Initiative to migrate all our plasma data to a cloudbased system

Platform for collaboration with outside researchers

Will include some analysis and visualization tools

Will support application of machine learning and "big data" statistical analysis

Fusion 2030

A joint initiative by the Canadian fusion research community

Proposes a staged program, starting with a renewal of research capacity in fusion science and support for domestic and international collaborations

Fusion 2030: Roadmap for Canada

general fusion

CLEAN ENERGY. EVERYWHERE. FOREVER.

Michael Delage

Chief Technology Officer michael.delage@generalfusion.com 604-439-3003

Y

Twitter @generalfusion Instagram @generalfusion

0

LinkedIn general-fusion

in

general fusion

106-3680 Bonneville Pl Burnaby, BC Canada www.generalfusion.com