PASSIVE MHD SPECTROSCOPY FOR AUGMENTING

generalfusion

MAGNETIC RECONSTRUCTION ON

SPHERICAL TOKAMAK PLASMAS

Peter O'Shea, Michel Laberge, Alex Mossman,

Meritt Reynolds, and General Fusion Team

EPR 2017

SPECTOR Experiment

SPECTOR

- Built to allow ~3D compression tests of SPhErical Compact TORoid Plasma
- Plasmas injected vertically from Marshall gun up to an Aluminum flux conserver
- Independently controlled central shaft current allows formation of spherical tokamaks

SPECTOR Experiment: Lab Flux Conserver

SPECTOR

- Built to allow ~3D compression tests of SPhErical Compact TORoid Plasma
- Plasma injected vertically from Marshall gun up to an Aluminum flux conserver
- Independently controlled central shaft current allows formation of spherical tokamaks

- Lab version of experimental head as a substantial array of B-probes
- Enables magnetic reconstruction

- Lab version of experimental head as a substantial array of *B*-probes
- Enables magnetic reconstruction

- Lab version of experimental head as a substantial array of B-probes
- Enables magnetic reconstruction

 We want to measure and control the q-profile of our plasmas because it is crucial for stability

Lab Version Diagnostics to aid reconstruction

 Polarimeter system (118 um laser) is under development for use on the lab version of SPECTOR

PCS Flux conserver : constrained

- Field compression version of experimental head has a limited array of B-probes
- Hinders magnetic reconstruction

Challenge for Field Version of SPECTOR

- We have targets for q-profiles based on stability analysis
- How to do Reconstruction to know if we're near these targets ?
 - Even on the lab machine, B-probes won't tell you much about the core
- Despite the ability to learn from what we see on the relatively well diagnosed Lab version of Spector...
 - No two machines are perfectly identical
 - Lab version has different inner electrode
 - Machine conditions and recipe can vary
- So....we want / need to supplement the limited information we get from B-probes on the field machines with additional information

Enter "Wiggleometry" (MHD Spectroscopy)

• Most plasmas have bursts of oscillations on magnetic probes

Enter "Wiggleometry" (MHD Spectroscopy)

• Most plasmas have bursts of oscillations on magnetic probes

• Onset of particular wiggles are delayed in time as overall safety factor is increased from shot-shot... (eg. as we increase shaft current)

Major Dynamics / Life Cycle for our Compact Toroids

- Coaxial Helicity Injection / Marshall Gun
- After bubble-out of the CT and the formation current dies away, there is 'excess' toroidal field in the pot / plasma.

Major Dynamics / Life Cycle for our Compact Toroids

- Coaxial Helicity Injection / Marshall Gun
 - After formation ends, plasma current profile is quite hollow
 - These Plasmas have no current drive and no auxiliary heating...plasma heating after formation due to Ohmic decay of injected magnetic flux.
 - Ohmic heating will naturally evolve plasma towards a peaked current profile
 - So:
 - Early time : hollow current profile : reversed shear
 - Late time : peaked current profile : monotonically rising q profile

Contours of λ [1/m] from 2D MHD simulation [VAC]

2D Simulation captures basics of q-profile evolution

- Early time : hollow current profile : reversed shear
- Late time : peaked current profile : monotonically rising q profile

2D Simulation captures basics of q-profile evolution

- Early time : hollow current profile : reversed shear
- Late time : peaked current profile : monotonically rising q profile

2D Simulation captures basics of q-profile evolution

- Early time : hollow current profile : reversed shear
- Late time : peaked current profile : monotonically rising q profile

Reversed shear can give rise to double tearing mode*

* B. Carreras, H.R. Hicks and B.V. Waddell, Tearing-mode activity for hollow current profiles 1979 Nucl. Fusion 19 583.

 Double crossing of rational flux surfaces excites instability, magnetic islands forms. As plasma rotates by B-probes we see a wiggle until the conditions enabling the instability end

• Onset of particular wiggles are delayed in time as overall safety factor is increased from shot-shot... (eg. as we increase shaft current)

• Onset of identifiable wiggles are delayed in time as overall safety factor is increased shot-shot. Even more features visible when you zoom in

 Wiggles verified to be due to rotation of helical structures seen on other diagnostics. An array of 6 B-probes can ID toroidal mode number, n

Example of what our q-model says during real shots: Highish-Q

- At higher safety factor we saw repeatable appearance of n=1 wiggles early and then later another distinct n=1 later. Both are delayed as overall safety factor is increased
- Our interpretation is that this is because the core q(r) is falling through q=3 and then q=2

Quantitative time history of q min

- Study the comings and goings of the various modes as a function of time and machine settings. Can unambiguously ID the q values associated with each
 - All discharges end in Sawteeth q~1
 - The q=1.5 mode goes away at higher overall safety factor because reversed shear is gone late in discharge

• Onset of identifiable wiggles are delayed in time as overall safety factor is increased from shot-shot... (eg. as we increase shaft current)

Inferences about q-profile during PCS 14 test

- Can clearly see 3 bursts of MHD from q=3, q=5/2, & q=2 crossings
- From similar shots leading up to the compression shot we also know approximately when the reversed shear disappears and when sawteeth begin.

We were able to infer central q-profile for PCS 14

- Study the comings and goings of the various modes as a function of time and machine settings. Can unambiguously ID the q values associated with each
 - At the time the wall began moving on PCS 14, we infer that central qprofile had just become monotonic and central value was very near q(0) = 3/2

CLEAN ENERGY. EVERYWHERE. FOREVER.

general fusion

Twitter @generalfusion Instagram @generalfusion LinkedIn general-fusion