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Executive Summary 
 
Climate change, clean technology and innovation are now identified in provincial and federal 
agendas as major issues facing Canada’s (and the world’s) future. The central questions are 
threefold: 1) how do we satisfy the large future energy requirements of the developed and 
especially developing countries; 2) how do we do this in a sustainable, environmentally 
acceptable way and; 3) how do we ensure suitable economic opportunity for our children, 
grandchildren and future generations in an energy dependent society? Associated issues 
include: how does this fit into the international scene and, where does Canada want to position 
itself in this new energy future? 
 
We are aware that the fossil fuel era will be short-lived (centuries, not millennia) due to both 
supply and environmental constraints. There are long-term energy solutions that do not depend 
on carbon fuels:  

 fission (sustainable with fuel breeding - but has radioactive waste to manage); 

 intermittent renewables such as wind and solar (sustainable - but constrained in 
application due to factors such as availability and variability); 

 steady renewables such as hydro and geothermal (sustainable, but limited growth 
potential and/or geographic constraints); 

 fusion (sustainable - and environmentally acceptable). 
 
Fusion is the energy source that powers the sun and all stars. Apart from having the highest 
energy density of any source, fusion has the best energy payback ratio (EPR) and carbon life 
cycle footprint of any source (including solar, wind and fission). 
 
Fusion, as a primary energy source is particularly suited for industrial scale heat, electricity and 
hydrogen production. Fusion will be especially important for generating electricity - comprising 
an increasing proportion of energy used to support a growing demand in mobile and stationary 
applications (think of mid-century autos running exclusively on electricity or hydrogen fuel cells). 
 
Moreover, the small fuel requirements of a fusion power plant ensure the smallest 
environmental footprint (and the “exhaust” is helium – a safe and inert gas). Indeed, the fusion 
fuel needed for one full year's operation of a 1,000 Megawatt electrical power station, 
comparable to BC Hydro’s Site C dam, could be delivered in the back of a pickup truck. With 
minimal fuel requirements and environmentally acceptable operation, fusion power plants 
represent a significantly reduced radiation hazard compared to conventional nuclear plants, 
providing more flexibility for siting; this, in turn, reduces the need for expensive "not-in-my-
back-yard" transmission lines. 
 
The long-term economic implications are significant - the projected worldwide demand for new 
electricity generation in this century will require in excess of $100 trillion investment beyond 
that required for the replacement of existing plants. In addition, fusion - as a clean, available on-
demand energy source - can be used for industrial heat processing, desalination of water, 
production of hydrogen, etc. for higher value added applications. Since fusion energy systems 
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intrinsically employ very sophisticated technology, the associated value added is very high 
indeed. 
 
The prospect of fusion satisfying worldwide demand motivates the large international effort to 
harness this clean, sustainable energy source. Given that the countries involved represent over 
half the world’s population, it can be anticipated that fusion will become an important energy 
source by mid-century or sooner. This energy technology will have a transformative positive 
impact on the world’s energy strategies (virtually inexhaustible, environmentally acceptable, 
and universally available). 
 
This prospect underpins the large international effort to harness fusion. Two major approaches 
to fusion - magnetic fusion energy (MFE) and inertial fusion energy (IFE) - and several alternative 
approaches (including that of General Fusion) - are being pursued worldwide. In all approaches, 
the challenge is to create conditions similar to those in the interior of the sun to enable 
"burning" of the fuel (isotopes of hydrogen).  This is not a trivial task, as it requires both high 
fuel temperature and containment of the hot fuel long enough to generate more output energy 
than that required to heat it to "ignition" in the first place. 
 
Development of the MFE approach has been an international collaborative effort since the late 
1950’s and the largest undertaking is the ITER project in France - funded by the EU, China, India, 
Japan, Korea, Russia and the United States. This $20+ billion project is expected to be 
commissioned in the mid-2020s and demonstrate fusion power (~500MW), but not electrical 
production, by 2030.  
 
Apart from the ITER cooperation, various countries individually are supporting large national 
MFE programs. Particular examples include China, that has identified fusion as one of the 5 
priorities in their 2020 vision, and Korea, that has passed legislation formally including fusion as 
a line item on its national agenda. The steady but cumulatively large progress in MFE R&D can 
be seen in Figure 1 and Figure 2, lending support to the 2030 timeline for design and 
deployment of a demonstration prototype fusion power plant.  
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Figure 1. Historical progress in MFE towards achieving ignition/burn 

 
Figure 2. Historical progress in MFE based on key measures 
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IFE, a distinctly different approach from MFE, began theoretical research following the invention 
of the laser in 1960 and then experimental research by the mid-1970’s, when the first high 
energy laser systems were built. Scientific and engineering progress has been rapid due to a 
combination of factors: i) large defense investments, particularly in the United States and 
France, and; ii) the involvement of many researchers in academic and national labs throughout 
the world - stimulated by the science and prospect of potentially simpler IFE power systems. 
 
Two high energy laser facilities – the National Ignition Facility (NIF) at Lawrence Livermore 
National Laboratory (LLNL) in the United States (Figure 3, now operational) and Laser MegaJoule 
(LMJ) in France (in the final stages of construction) - have been built to achieve fusion fuel 
ignition. NIF has already shown fuel core ignition (although not yet full pellet ignition). The 
progress in IFE R&D can be seen in Figure 4. The achievement of full ignition in an IFE 
experiment will profoundly influence energy strategies worldwide and have an impact on 
Canada. Performance factor improvements (Q-values) of less than 10 are needed for both MFE 
and IFE to reach demonstration phase. 
 
 
 
 

 
 

Figure 3. The National Ignition Facility (NIF) 
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Figure 4. Metrics of fusion performance to date for inertial and magnetic fusion approaches.  The vertical axis is 
pressure times time and the horizontal axis is temperature in units of kev (1 kev = 10,000,000K). 

 

In addition to the major national efforts, and as a consequence of international progress in 
fusion science and technology, a number of private sector companies are emerging to pursue 
alternative concepts to the two major approaches. Examples may be found in Asia, Europe and 
North America, e.g., General Fusion in Burnaby, BC. While at a much earlier stage of 
development, these companies contribute a growing body of engineering expertise. With the 
critical assets of highly qualified personnel and technology in hand, gained from public and 
private investment, it may be expected that the cumulative knowledge will enable a transition 
to practical fusion energy systems far more quickly, once ignition has been demonstrated. 
 
What happens following the demonstration of fusion ignition and burn? The answer is clear - 
fusion offers the prospect of sustainable, abundant, clean energy for the world and will be so 
deployed. In addition to growth in energy demand in developing countries, there is a need for 
replacing existing power plants with non-carbon fuels in the developed countries. There are 
already preliminary designs for demonstration power plants based on MFE and IFE. The 
projected delivery time of a 400MW IFE demonstration plant is 10 years following ignition and 
approximately the same for MFE. It is anticipated that the year 2030 will be a transition point for 
fusion energy. 
 
Perhaps surprisingly, Canada is the only developed country without a dedicated national fusion 
program. It is hoped that this proposal will help to change this situation. A consortium of post-
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secondary institutions and industries engaged in R&D, in five provinces, has begun working to 
position fusion on the national agenda and prepare Canada for the fusion future that is coming. 
 
A proposed fusion roadmap for Canada is provided in greater detail in the following document. 
The initial 5 year phase is concerned with “Capacity Building” - both highly qualified personnel 
(HQP) and technology. This phase would be accomplished by expanding both university 
programs and industry collaborations. It would include technology development in magnetic, 
inertial and alternative fusion approaches as part of the core training and buildup. Specific 
international opportunities include the offer of collaborations that would leverage national 
investment, bootstrap the learning curve for Canadians and build long term working 
relationships. The goal is to position Canada as a world player in 5 years and a leader in 10 years.  
 

 
 

Figure 5. Proposed Fusion 2030 Program 
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Since the ultimate objective is to participate in any demonstration power plant - design, 
construction and operation – based on a breakthrough that is anticipated to occur by 2030, this 
roadmap provides a focus to build a strong capability in enabling technologies and advanced 
fusion power systems. Important technologies, with wide areas of application, include lasers, 
optics, photonics, materials science, targets, robotics, sensors, computing (controls, data, 
analytical methods), additive manufacturing, fusion systems engineering, etc. Deuterium and 
tritium production, storage and handling technology for fueling fusion power plants is another 
key area of Canadian expertise that can be exploited. Materials, subject to irradiation by high 
energy fusion plasmas (particles and radiation) will be one of the key technology areas, offering 
scope for a wide variety of Canadian contributions by private companies and public institutions 
such as Canadian Nuclear Laboratories (CNL), TRIUMF, and the National Institute for 
Nanotechnology.  
 
As a consequence of long respected involvement internationally, the Canadian fusion initiative 
has strong support from the leaders of the programs in the United States, Europe and Asia and 
invitations to collaborate on fusion development (including posting of Canadian researchers to 
their labs). The University of Alberta and the University of Saskatchewan are particularly known 
for their international engagement. This provides an opportunity to rapidly build expertise and 
develop even stronger working relations with our partners in fusion energy domestically, 
through private companies such as General Fusion, and internationally, such as with China.  
 
The advanced technologies associated with fusion systems offer an overarching driver for 
economic diversification.  As a strategic priority, fusion would nicely complement and 
considerably amplify current efforts to build strength in energy, nanotechnology and computer 
modeling as well as launch lasers and photonics as a new high-tech sector - a compelling 
combination of sustainable energy/environment/economy components providing long-term 
economic growth in myriad technologies highlighted above. 
 
Our Fusion 2030 roadmap calls for a revitalized Canadian National Fusion Program, in concert 
with provincial initiatives, to prepare Canada for the coming fusion era. A three phase program 
of capacity building and technology development is described, culminating in construction of 
demonstration fusion power plants and the establishment of a multi-billion dollar fusion energy 
industry in Canada. Preparedness and participation are the key attributes of the strategy. When 
tasked with “big issues”, Canada has repeatedly demonstrated the capability to adapt, innovate 
and achieve. Sustainable, clean base-load energy to replace carbon fuels is the paramount issue 
of this century and fusion is a major part of the solution. Canada needs to be involved. 
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1. Introduction 
 
Fusion energy has the potential to transform the world’s energy supply. As a clean, safe and 
abundant source of energy, it presents an opportunity to combat climate change while still 
meeting the world’s growing energy needs. With fusion development accelerating worldwide, 
there is a desire and commitment amongst Canadian researchers to build a strong Canadian 
fusion program that is internationally competitive, and to put Canada back at the forefront of 
fusion development.  
 
This document outlines the roadmap for a Canadian fusion research program culminating in the 
establishment of a demonstration fusion energy power plant. It will provide context on recent 
developments at both a Canadian and international level, and propose a program of research 
and development that will expand Canadian cleantech innovation and expertise while building 
the country’s capacity to meet its climate change mitigation targets. 
 
 

2. World Context: 
 
We are currently in an exciting new era in the development of fusion energy worldwide.  There 
are high profile national programs in most advanced nations in the world, developing a variety 
of different approaches.  In addition there a dozen or more private ventures pursuing 
alternative concept routes to fusion energy, including one of the leading ones, General Fusion, 
here in Canada.  Most of the current activity is at the stage of scientific proof of principle but 
also there is a growing emphasis on investigating engineering and technical issues which need to 
be addressed in the implementation of future fusion reactors.   We are on the brink of 
demonstration of net energy gain on a large scale both with the magnetic fusion energy (MFE) 
approach and the inertial fusion energy (IFE) approach.  The former will be demonstrated by the 
international ITER project under construction in France at present and the latter at the National 
Ignition Facility in Livermore California within the next few years. In parallel, a number of 
directions are being pursued to improve on the design of these approaches to lead to more 
compact and more economic power plant designs, which is the basis of most national fusion 
programs around the world.  
 
In all these approaches a number of benchmarks are used to assess the performance, the most 
important being the energy output versus energy input to heat the fuel, the so called Q 
parameter.  From the scientific side the advancement towards net energy gain can be assessed 
in terms of the product of density and confinement time of the fuel, the so called Lawson 
Criterion.  At the same time, a minimum temperature on the order of 50 to 100 times that at the 
centre of the sun must be achieved in order for the fusion reactions to occur. This leads to a 
triple product of density, temperature and confinement time or pressure and time as a metric to 
compare the status of various different approaches to fusion.    
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To put this in context the annual investment in fusion research and development exceeds US$4B 
per year around the world.  Initial planning is already starting towards Engineering 
Demonstration systems for net power production on an intermediate scale to develop the 
advanced systems and materials to withstand long term operation of power plants.  The 
construction of such systems will likely start in the period of 2025 to 2035.  Such demonstration 
plants will target net energy returns of 20 to 100 times.  A brief outline of current international 
activity and timelines is given in the following subsections.  
 
 
 

A. Magnetic Fusion 
 
Magnetic Confinement Fusion research aims to develop a fusion power plant where a fusion 
plasma is confined in a “magnetic bottle”; using powerful, steady-state magnetic fields 
generated from external coils.  These systems, including tokamaks, stellarators, and reverse field 
pinches, are toroidal in shape, with the tokamak configuration being the most widely studied. 
 
Construction is underway at the ITER project (Figure 6) [MF1] in France, a collaboration of many 
countries (the EU, China, India, Japan, Korea, Russia, and the USA), with first operation expected 
in 2025.  The mission of the ITER project is to demonstrate the feasibility to ignite a fusion 
reactor with a net energy gain. 
 

 
 

Figure 6. 3D CAD image of the ITER tokamak [MF2] 
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Significant progress has been made towards tokamak reactors.  The Joint European Torus (JET) 
machine has set the world record of Q=0.6 in the 1996 [MF3]. Extrapolating from deuterium 
plasma performance in the JT-60 tokamak, the device achieved an equivalent of Q=1.25, 
indicating that break-even conditions would have been surpassed had a deuterium-tritium fuel 
mix been utilized [MF4].  In China, the EAST tokamak recently set records for high temperature 
(70 million degrees), long pulse operation.  The Japanese are constructing a new 
superconducting tokamak, JT-60SA, and in Europe, the Joint European Torus (the world record 
holder for fusion power) is gearing up for a major tritium-fueled campaign. The progress in the 
development of tokamak-based Magnetic Fusion is shown in Figure 7 showing better 
exponential improvements in performance over the past 4 decades than that in the 
semiconductor industry, a benchmark referred to as Moore’s law. 
 

 

 
Figure 7. Progress in tokamak-based Magnetic Fusion compared to Moore’s law for semiconductors 
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Recent years have seen some major advances in other magnetic fusion configurations, both in 
science and in technology.  In Germany, the Wendelstein 7-X stellarator [MF5] recently began 
scientific operations (Figure 8), and quickly demonstrated record performance for this type of 
system, reigniting interest in stellarators as fusion power plants. Another major stellarator is 
LHD [MF6].  
 

 
 

Figure 8. The Federal Chancellor of Germany, Dr. Angela Merkel, switched on the first hydrogen plasma in 
Wendelstein 7-X on February 3, 2016. 

 
Spherical tokamak (Figure 9) [MF7] is a type of tokamak with low aspect ratio (a fat torus). 
Active research has been carried out in MAST in the UK [MF8] and NSTX-U in the USA [MF9]. The 
key advantages of spherical tokamaks include improved plasma stability and potential to build 
compact fusion reactors with lower capital investment. 
 

 
 

Figure 9. Image of plasma in the MAST Spherical Tokamak Experiment at the Culham Laboratory in the U.K [MF10] 

 
At the same time, a new wave of innovation in high temperature superconductors is leading to 
concepts at MIT, Princeton, and in the UK that would make for smaller, lower cost fusion power 
plants, and the potential for an accelerated commercialization program. 
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B. Inertial Fusion  
 
The main approach to inertial confinement fusion (ICF) energy relies on using very high power 
laser pulses to compress and heat the fuel to the point of ignition and burn (somewhat 
analogous to a diesel engine). As shown in Figure 7, there are number of configurations 
currently being explored, from traditional indirect drive and direct drive approaches to 
advanced schemes using a separate laser pulse to produce the actual ignition the fusion 
reactions (like a match lighting fuel). Once ignited the fuel will burn extremely rapidly in a 
fraction of a nanosecond (1 ns = 1 milli-microsecond).   
 
The indirect drive approach [IF1] has to date been the most developed. With the construction of 
the largest laser system in the world, producing 1.8 MJ pulsed energy, the multi-billion dollar 
National Ignition Facility (NIF) [IF2] at the Lawrence Livermore National Laboratory (LLNL) in 
California is a test platform for this concept.  This approach, which converts laser light into a 
burst of X-rays inside a small canister which then irradiates and compresses the fuel capsule, has 
the advantage of being very robust and has been pursued as the mainline approach by the USA 
and France to date.   
 
The next most investigated approach is the direct drive approach [IF3] using the laser beams to 
directly irradiate the fuel pellet.  This approach is energetically more efficient, should lead to 
ignition at lower overall laser system energies, and achieve higher gains for a given laser energy.  
The largest laser system in the world pursuing this approach is at the Laboratory for Laser 
Energetics (LLE) in Rochester [IF4] with a peak laser pulse energy of 40kJ.   
 
The most advanced ICF approaches currently proposed would use a two-stage approach for 
compression and ignition (somewhat analogous to a gasoline engine).  A first laser pulse is used 
for the initial compression stage.  A second laser is then used to create an ignition spark.  This 
two-stage laser approach would reduce the requirements of the primary laser pulse which only 
needs to compress the fuel to a high density ready to burn.  There are a variety of such 
approaches, including Fast Ignition with electrons [IF5], Fast Ignition with protons [IF6], and 
Shock Ignition [IF7].  These approaches have the advantage of being more efficient, yet would 
lead to much higher gain at significantly lower overall laser energies than the single pulse 
approaches.  The variety of approaches is illustrated in Figure 10 and the scaling of net energy 
gain versus overall laser pulse energy is shown in Figure 11.  
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Figure 10. Various approaches to laser fusion energy, from left to right: Indirect Drive, Direct Drive, Fast Ignition 
and Shock Ignition 

 
 
 
   

 
 

 

Figure 11. Calculations of net energy gain, defined as fusion energy produced divided by laser energy used for 
various approaches to laser fusion energy as a function of total laser energy in Megajoules. 
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At present, a number of the largest nations of the world have built or are building large laser 
systems to explore indirect drive fusion with the option to convert to direct drive if, in the end, 
the direct drive approach looks more promising.   These facilities include the 1.8-MJ NIF facility 
in the United States (Figure 12), the 2-MJ LMJ facility in France, the 600-kJ Shenguang IV facility 
in Mianyang China, and a Megajoule-class facility in Russia.  In addition, there are smaller laser 
facilities investigating various aspects related to laser fusion including direct drive and advanced 
ignition.  These include the 40-kJ laser facility at the Laboratory for Laser Energetics (LLE) in 
Rochester, NY, United States; the 12-kJ laser facility at the Institute of Laser Engineering (ILE) in 
Osaka, Japan; the 6-kJ laser facility (Orion) in Culham, England; the 2-kJ Central Laser Facility at 
Rutherford Appleton Laboratories (CLF RAL) in England; the 1-kJ class laser facilities in Paris, 
France (LULI), Shanghai China (Shenguang II), and the United States (JLF at LLNL, and NRL in 
Washington, DC).    

 
 

Figure 12. Photo of 1.8MJ laser bay of the National Ignition Facility at Lawrence Livermore National Laboratory.  

 
The best result achieved to date has been at LLNL using the indirect drive approach with the 
production of net energy gain of 17 kJ fusion energy production from 10kJ energy invested in 
the ignition hot spot of a laser fusion pellet [IF8].  This value is within a factor of 2 of ignition at 
which point the fuel would ignite and start to burn releasing Megajoules of energy.  Current 
experiments at LLE for the direct drive approach if scaled to the 1.8 MJ laser driver energy 
indicate that this approach would yield 120kJ of fusion energy [IF9] and thus are very similar in 
status to the indirect drive approach.  Current experiments still have a number of technical 
issues which can be improved including the uniformity of the implosion and further shielding of 
the target fuel from preheat before compression.  These are the subject of investigations funded 
by the Department of Energy (DOE) in the USA with the goal of reporting in 2020 [IF10] on the 
understanding of all technical issues related to achieving laser fusion ignition, and a 
recommendation of a route forward for achieving ignition.   
 
At the same time, many of the smaller laboratories are studying the technical issues related to 
implementing advanced ignition techniques.  The study and implementation of these advanced 
ignition techniques is envisaged in a number of the large laser facilities currently under 
construction including LMJ in France and Shenguang IV in China.  Two planning studies for 
Engineering Scale Demo systems have already been prepared: the LIFE system for Indirect Drive 
Fusion [IF11] at LLNL and the HiPER system [IF12] using advanced ignition techniques in Europe.  
These proposals for building demonstration ICF fusion power plants will be put forward once 
ignition and fuel burn has been demonstrated at one of the current facilities.   
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C. Alternative Fusion Concepts 
 
The last ten years has seen a surge in surge in the investigation of alternative approaches and 
technologies for fusion energy. Advances in plasma physics, electronics and digital controls, 
computer simulation, and materials have opened up new avenues for developing fusion power 
plants.  In some cases, this work is building on old concepts originally developed decades ago, 
but with some modifications and innovations making use of new technologies and new 
knowledge.  In other cases, completely new ideas are emerging based on modern understanding 
of plasma physics.  Beyond science and technology, new business models and strategies for 
research and development have also emerged, with private companies attracting tens and even 
hundreds of millions of dollars, building world class teams and research centers working closely 
with publicly-funded institutions. 
 

i. Magnetized Target Fusion / Magneto-Inertial Fusion 
 
Many innovative new approaches lie in a branch of fusion research called Magneto-Inertial 
Fusion or Magnetized Target Fusion (MTF). [MTF1]  Magnetic Fusion (MF) systems are typically 
envisioned as low density, steady-state systems, where the cost of confining large plasmas 
dominates.  Inertial Fusion (IFE) systems have very small plasmas, but are dominated by the cost 
of the very high power driver systems (such as lasers).  In both cases, recent advances are 
leading to opportunities to significantly reduce those costs.   
 
MTF spans the intermediate regime between MF and IFE, using small plasmas confined by 
magnetic fields and rapid compression for heating to fusion conditions.  The aim is power plants 
where both the cost of confinement and the compression driver can be dramatically lower, as 
illustrated in Figure 13. [MTF2] 
 

 
Figure 13. Magnetized Target Fusion compared to Inertial and Magnetic Fusion 
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MTF concepts trace back to research first undertaken in the 1970s, however the science in this 
regime remains less explored than MF or IFE.  Recent efforts are aiming to close this gap. 
[MTF4], [MTF5]. In Canada, the world leader in MTF research, General Fusion, is undertaking 
pioneering research to explore the behaviour of compressed magnetized plasmas.  And in 2015, 
in the USA, the Department of Energy’s Advanced Research Projects Agency for Energy (ARPA-E) 
launched their ALPHA program, funding nine different groups pursuing variations of MTF and 
supporting science.  ARPA-E grant recipients include private companies such as Helion Energy in 
Seattle, national laboratories such as Los Alamos National Lab, and universities such as 
Swarthmore College and the University of California.  Sandia National Laboratory, also a 
recipient of ARPA-E funding, is researching another approach to magneto-inertial fusion using 
an extremely large pulsed magnetic field to compress the fuel, called Magnetic Liner Inertial 
Fusion (MagLIF). [MTF6].   Research efforts on these concepts are also underway in China. 
 
 

ii. Other Alternative Fusion Concepts 
 
Alternative concepts for fusion energy have been proposed periodically over the past decades, 
but have generally received little support [AC1], [AC2].  Recently, however, a diverse range of 
fusion concepts have emerged and attracted meaningful investment in both the private and 
public sector. [AC3], [AC4], [AC5] These alternative concepts share a common theme of 
accepting risk from the application or exploration of new science and technology with the goal 
of developing a commercially-viable fusion power plant in the near future.  These include Tri 
Alpha Energy (Irvine, California) studying a unique Field-Reversed Configuration, Figure 14, 
Lockheed Martin’s Skunkworks (USA) division developing a new magnetic fusion configuration, 
EMC2 (USA) studying a magnetic fusion configuration called the Polywell, and First Light Fusion 
(UK) pursuing a new inertial fusion concept.   
 

 
 

Figure 14. Picture of Tri-Alpha Fusion Research Device 
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D. Fusion Power Plant Technologies 
 
Since the beginning of research and development of fusion reactors in the 1950s, there have 
been several science and technology topics investigated that have relevance to all fusion reactor 
concepts, including both mainstream and alternative concepts. These include: 
 

 Interaction between the fusion plasma and the first wall of the surrounding structural 
component [PP1].   

 Modeling and assessment of neutron and photon (gamma rays, X-Rays) transport and 
interactions outside the fusion plasma region.  This topic includes the interactions of 
neutrons and photons with various materials and components, such as coolants, 
breeding materials, shielding, support structures, field magnets, and others [PP2].   

 Performance of structural materials and components under high radiation environments 
(neutron, gamma, X-rays), along with the impact of the cycling of thermal heat and 
mechanical force loads, which may cause fatigue and damage [PP3].   

 Production, handling and storage of fusion fuels (such as deuterium and tritium), and 
the interactions of deuterium and tritium with various materials [PP4], [PP5].   

 Behavior of fertile and fissile nuclear materials, if the fusion reactor is being used as a 
neutron source to drive a sub-critical fission reactor blanket [PP6], [PP7].   

 Design and operation of the balance-of-plant, which is used to convert the heat from 
the fusion plasma into electricity [PP8], [PP9].   

 Overall safety analysis and environmental assessment of the fusion power plant, which 
generates high radiation fields (in the form of high-energy neutrons, X-rays, and gamma 
rays) while in operation [PP10], [PP11]. 

 
The operating parameters of a fusion reactor place many of the materials under severe stress, 
and thus materials development, engineering and testing is a critical necessity for the eventual 
implementation of fusion reactors.  Test facilities with sufficient neutron, photon and charged 
particle flux, and the correct mix of high-energy particles and photons do not exist today and 
plans are underway for the construction of such test facilities.  All of the above generic fusion 
reactor issues are being studied at research facilities globally, including the United States, 
Russia, China, Korea, Japan, and Europe.  However, significantly more effort is required to 
develop materials and sub-systems for prototype demonstration fusion power plant facilities 
(Engineering Demo) and this effort in turn will allow more rigorous lifetime testing of the various 
subcomponents under real operating conditions. 
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E. Summary 
 
There is presently significant global activity in fusion energy development, with the advanced 
inertial confinement and magnetic fusion concepts now within striking distance of breakeven 
energy production.  

 

 

Figure 15. Metrics of fusion performance to date for inertial and magnetic fusion approaches.  The vertical axis is 
pressure times time and the horizontal axis is temperature in units of kev (1 kev = 10,000,000K). 

 
Two metrics are critical to achieving net energy production: sufficient confinement time (as 
given by the product of pressure and time (Lawson Criterion); and appropriate temperatures to 
achieve a sufficient energy production rate. These are shown as the two axes on the plot above. 
The region where net energy production can be achieved is shown in the upper right region of 
the curve (the Burning Plasma region). 
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Studies by the IAEA, European Union, and USA have outlined roadmaps to power plant systems.  
At the current rate of progress it appears very likely that scientific demonstration of the 
conditions required for net energy production by fusion energy will be reached fairly soon.  A 
roadmap of project timelines and expected progress from various sources is summarized in 
Figure 16. 
 
 

 
 

Figure 16. International progress and estimated timelines of major fusion programs till 2030. 
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3. Canadian Current Context: 
 
Canada has a long history of research and development in fusion energy, but the activity has 
shrunk considerably over the past two decades after the termination of the Canadian National 
Fusion Program in the late 1990’s [G1], [G2].  In the 1960’s, recognition of the potential of fusion 
energy led to the establishment of a number of groups studying plasma physics and fusion 
energy, particularly at the Universities of British Columbia, Alberta, Saskatchewan, Toronto and 
Institut National de la Recherche Scientifique (INRS) in Montreal.  All of these were major 
players in the field in the 1970’s and 1980’s.  In addition, the Laser-Plasma group at the National 
Research Council (NRC) became a significant player in laser fusion related studies during this 
period.  These activities eventually led to the establishment of a Canadian fusion energy 
program in the 1980’s with the construction and operation of the Tokamak de Varennes (TdeV) 
in Quebec and the Canadian Fusion Fuels Technology Project (CFFTP) in Ontario, led by Ontario 
Hydro (the provincial electric power utility) and Atomic Energy of Canada Limited (AECL).  
Canada was also an initial member of the development group for ITER.   
 
In the mid-1990s, during an era of government austerity, the Canadian government cancelled 
the national fusion energy program.  This led to the demise or redirection of a number of the 
programs.  However, there is still significant core expertise remaining in a few of the groups 
which now can be used to start a new effort to finally achieve fusion energy.  The current status 
in various areas is summarized below. 
 

A. Magnetic Fusion 
 
Magnetic fusion research is being carried out in Canada in both public and private sectors. 
Fusion research has been underway in the Plasma Physics Laboratory (PPL) at the University of 
Saskatchewan since late 1950s.  For more than half a century, PPL has been making 
experimental and theoretical contributions to the study of controlled nuclear fusion. The first 
Plasma Betatron began operating in the early 1960s. Following the most promising technological 
path, University of Saskatchewan researchers, along with the majority of the world’s plasma 
physicists, have worked mainly with tokamaks. The University of Saskatchewan's tokamak, 
STOR-M, has been in operation since 1987 and is currently the only active tokamak in 
Canada. There have been constant upgrades, improvement, and additions to STOR-M.  Over the 
years, U of S researchers at the PPL have made several significant and original contributions to 
tokamak research on fueling technology, confinement improvement, and novel tokamak 
operation scenarios including quasi-continuous alternating current operation and feasibility 
studies of plasma start up with a small iron core in spherical tokamaks. University of 
Saskatchewan PPL maintains close collaboration with international fusion groups and has 
actively participated in the IAEA (International Atomic Energy Agency) Coordinated Research 
Project “Utilization of the Network of Small Magnetic Fusion Devices for Mainstream Fusion 
Research”. STOR-M has also been an excellent facility for training students, young scientists and 
engineers and continues to attract a large number of students and post-doctoral fellows (PDFs).  
 
In addition, theoretical work is also carried out in PPL to study waves, instabilities and other 
important topics related to fusion plasmas. There are collaborations between the PPL and 
General Fusion on theory, modeling and diagnostics for their MTF program outlined below. 
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PPL has currently 3 professors, 2 emeritus professors and a dozen other staff and students 
including a PDF, a research assistant, and a number of graduate students. Currently, there is a 
search on for a tenure-track professor in experimental plasma physics at University of 
Saskatchewan. In 2011, the Province of Saskatchewan funded the Sylvia Fedoruk Canadian 
Centre for Nuclear Innovation which is now a focal point for nuclear research and development 
activity from medical sciences to fusion technology.  This gives an ideal platform for the 
initiation and operation of an expanded fusion program at the University of Saskatchewan.  
 
 
 

B. Inertial Fusion  
 
Inertial confinement fusion research in Canada has focused exclusively on laser-driven fusion. 
Research was initiated in a few groups at the NRC in Ottawa, INRS in Montreal and the 
University of Alberta, almost immediately after the approach was first publically disclosed at an 
IEEE Laser conference in Montreal in 1972.   
 
Canada had also recently invented the highly efficient pulsed atmospheric Carbon Dioxide 
discharge laser (CDDL) at the Defense Research Establishment at Valcartiers (DREV), and initially 
this was seen as a potential driver for laser fusion systems giving Canadian groups a potential 
advantage in development of such fusion systems.   
 
However, during the 1970’s it became clear that long wavelength lasers such as the Carbon 
Dioxide were poor drivers for laser fusion systems and were abandoned by 1980.  This shifted 
the thrust to short wavelength lasers and one of the leading candidates was an ultraviolet laser 
system based on Krypton Fluoride. This led to the establishment of a significant project at the 
University of Alberta funded by the Albertan government Energy Resources Research Fund 
(ERRF).  This project was a contributor to the development of techniques for efficiently 
extracting and compressing laser pulses and studies of laser-plasma interaction physics leading 
to the strong conclusion that ultraviolet wavelength drivers were ideal for laser fusion drivers.   
 
Smaller projects also developed at the University of British Columbia and University of Toronto 
during the 1980’s.  However, with the shutdown of the Canadian Fusion Program in the 1990’s 
most programs focused on new directions or shrank away.  The University of Alberta group 
remains the only group active in laser fusion research today. 
 
As shown in the summary table (Table 1) at the end of this section, there are 3 academic 
researchers (2 experimental and 1 theoretical) directly involved in laser fusion research at the 
University of Alberta, with another 5 working in the general laser or plasma experimental and 
theoretical area.  In fact, all of these other five were trained in fusion energy related programs in 
the past.  There is also on the order of $1.5M worth of laser systems and diagnostic systems for 
laser-plasma related studies at the University of Alberta.  The University of Alberta has one of 
Canada’s leading nanofabrication facilities (necessary for target fabrication and 
characterization), and the National Institute for Nanotechology (NINT) for materials 
development.  Other laser-plasma research groups exist at the University of Toronto, University 
of Ottawa (with a major new photonics thrust), and INRS in Montreal.  Additional laser 
development groups exist at the University of Laval and University of Manitoba.        
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The industrial sector is already involved and well positioned to take advantage of opportunities 
in laser fusion targets and instrumentation.  Local Microelectromechanical Systems (MEMS) 
companies in Edmonton such as Norcada and Applied Nanotools have already delivered targets 
for laser-plasma experiments to research groups around the world.  Applied Nanotools has also 
become a world leader in x-ray optics (a key diagnostic component for studying hot plasmas) 
with contracts around the world.  There is significant MEMS manufacturing capacity and 
expertise in the Edmonton area which can be expanded to serve the future needs of an inertial 
fusion program and subsequent industry.   
 
 

C. Alternative Fusion Approaches 
 

i. Magnetized Target Fusion / Magneto-Inertial Fusion 
 
General Fusion is a private company based in Burnaby, British Columbia pursuing the science 
and technology to develop a commercially viable fusion energy source based on principles of 
magnetized target fusion.  It is a world leader in this area. General Fusion’s R&D team includes 
over 50 scientists, engineers, and technicians, including 12 with PhDs in physics and engineering, 
and trains many co-op students (up to 13 at a time).  The expertise at General Fusion covers 
plasma physics theory and simulation, magnetized plasma experimentation and diagnostics 
systems, mechanical and electrical engineering, materials, control systems, pulsed power and 
fluid dynamics.  They operate world class compact toroid sources (Figure 17), a pulsed plasma 
compression program, the largest pulsed power facility in Canada, a flowing lead power plant 
technology platform and a 256 node computer cluster.  This is the second largest privately-
funded fusion science research program in the world. 

 
Figure 17. Plasma Injector at General Fusion for the MTF project 

General Fusion is funded primarily from an international syndicate of private investors including 
Cleantech venture capital, Cenovus Energy, Jeff Bezos, and sovereign wealth funds, with over 
$100M invested to date.  An additional ~$20M of capital has been received through Canadian 
government funding programs including Sustainable Development Technology Canada (SDTC), 
the Scientific Research and Experimental Development Tax Incentive Program ( SR&ED), and the 
Industrial Research Assistance Program (NRC-IRAP). 
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Since 2014, General Fusion has invested over $350,000 in university researchers and students, 
leveraging federal programs to result in over $500,000 in funding.  Universities and institutions 
involved with these collaborations include the University of Saskatchewan, Simon Fraser 
University, McGill University, University of Sherbrooke, TRIUMF (BC), Princeton University (in NJ, 
U.S.A.) and Queen Mary University (London, UK).  Other formal and informal research 
collaborations involved professors and scientists at Queen’s University (General Fusion 
sponsored a PhD student who has since joined General Fusion as a research scientist), Los 
Alamos National Laboratory (LANL, in Los Alamos, NM, U.S.A.), Defence Research and 
Development Canada (DRDC), Lawrence Livermore National Laboratory (LLNL in Livermore, CA, 
U.S.A.), the University of Washington, and Massachusetts Institute of Technology (MIT, in 
Cambridge, MA, U.S.A.). 

 

ii.  Other Alternative Concepts 
 
The University of Saskatchewan has recently constructed a Dense Plasma Focus system for 
materials testing. A 2kJ prototype device has been built and will be soon upgraded to a 20kJ 
device. Dense plasma focus is a candidate for boron fusion reactor without neutron emission.    
 
In Ontario, Hope Innovations, is in the early stages of exploring a concept based on multiple 
intersecting plasma arcs, stemming from research into the nature of high-current plasma 
discharges [AC6]. HOPE is continuing to develop its theoretical basis and has undertaken some 
preliminary experiments aimed at proving the concept. 
 

D. Fusion Power Plant Technologies 
 
Historically, Canada had been involved at a small scale in carrying out supporting research for 
both mainstream and alternative fusion reactor concepts [G1].  However, since the early 1970s 
[PP12], [PP13] and continuing through the 1980s until 1997, researchers across Canada were 
contributing to broad-purpose fusion energy science and technology development through the 
previous Canadian National Fusion Program [G1], which included the Canadian Fusion Fuels 
Technology Project (CFFTP) [PP14], [PP15].   
 
Canadian researchers have focused their efforts in the area of fusion fuels including 
technologies for the production, handling and storage of deuterium and tritium, evaluating 
breeder blankets [PP16], [PP17], understanding how deuterium and tritium interact with 
materials [PP4], [PP18], and the investigation of separating deuterium and tritium from water 
[PP19].  Other studies have involved investigating the interaction of plasmas with first wall 
materials and components [PP14], [PP15], and evaluating fusion-driven sub-critical systems for 
producing power and breeding fissile fuels, involving neutronics analyses [PP13].  Current 
activity is focused on deuterium production and tritium handling [PP4], with some exploratory 
computational neutronics studies on hybrid fusion-fission reactors [PP7].  There are also 
continuing Canadian university research activities on plasma-material interactions [PP20], 
[PP21], albeit on a small-scale.   
 
In terms of plasma materials interactions, which are of significant importance for the first wall 
lifetime in fusion reactors, a number of university groups in Saskatchewan, Alberta, Ontario and 
Quebec have studied such interactions for decades.  In addition, a private research company in 
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Montreal, Plasmionique (operating since 1999) has been working on developing and providing 
plasma source systems of various specifications for applications in plasma processing.  The work 
being done by Plasmionique could potentially be adapted for fusion research applications. 
   

E. Summary 
 
As seen above there is a very strong base of knowledge and expertise within Canada that can be 
used as a platform to initiate a renewed drive towards the goal of fusion energy. An inventory of 
current personnel and research facilities across Canada summarized in the Table 1 below. 
 

 

Institution Professors 

Researcher 
Scientists 

and 
Engineers 

PDFs 
Graduate 
students 

Present Value of 
Related Facilities 

     $M 

University of Alberta 5 1  10 2 

University of 
Saskatchewan 4 1 1 15 5 

University of Ontario 
Institute of 
Technology 1     

Other Universities 3   3  
General Fusion  50   20 

Canadian Nuclear 
Laboratories  2   2 

      

Totals 13 54 1 28 29 

      
Other Potential 

Resources      

      

Materials Science 
Researchers 4   4  

NINT 4   4  
Other related 

programs (Plasma, 
Optics, neutronics 

etc.) 10   10  

      

Overall Totals 31 54 1 46 29 
 

Table 1. Summary of personnel numbers and infrastructure in existence in Canada today plus complementary 
resource facilities such as NINT, CNL, other University groups, etc. 
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4. Canadian Proposed Program: 
 
It is strategically important for Canada to rejoin the international community in the area of 
fusion energy science and technology after a nearly 20-year hiatus.  The development of fusion 
energy as a viable power source will help support international efforts to increase long-term 
energy security and sustainability.  The use of fusion energy would also help protect the 
environment and mitigate global climate change through reduction in the emissions of air 
pollutants and greenhouse gases. 
 
By contributing its expertise and capabilities to international efforts, Canada can have a 
significant impact in accelerating the progress of the development of fusion energy, while also 
ensuring that Canada is a future player in what will be a dominant energy industry, with all the 
associated economic, environmental and social benefits.  The accelerated implementation of 
fusion energy will help reduce air pollution and greenhouse gas emissions, while also allowing 
growth in the use of energy.  This development path is particularly important, as developing and 
third-world nations become more industrialized and increase their energy usage, standard-of-
living, and quality-of-life.  
 
An investment in the development of fusion energy can have a much larger impact towards 
reduction in long-term air pollution and greenhouse emissions than other smaller programs in 
Canada to reduce domestic emissions.  As outlined below, it would be strategically 
advantageous for Canada to pursue a bold new program with a vision of becoming a significant 
world player within a five-year time period, and a world leader by the year 2030.   
 
A new Canadian National Fusion Program would require an initial investment of approximately 
$25M per year over the first five years from the federal government, matched by additional 
provincial contributions.  It would lead to an initial assessment review in 2020 to determine the 
path forward to an engineering “demo” fusion system, to be operational by 2030.  This effort 
could involve Canada’s participation in one or more international demo projects or a project 
that Canada would lead.  This effort would likely require an investment on the order of $100M 
per year of federal funding from 2022 to 2030, potentially supplemented by contributions by 
provincial governments and private sector investors. 
 

A. Magnetic Fusion 
 
It is very likely that demonstration of a burning plasma with net energy gain will be made in 
ITER.  However, commercial viability of an ITER type high aspect ratio tokamak reactor is 
questionable because of its large size, complexity and capital cost. It operates at a relatively low-
beta, the ratio of the thermal energy density to the magnetic energy density, which increases 
the size of its magnets and adds substantially to capital costs. This problem can been resolved in 
a Spherical Tokamak (ST) which is characterized by small aspect ratio and larger plasma current. 
The low aspect ratio and the D-shaped plasma cross-section of spherical tokamaks provide 
strong intrinsic plasma shaping and enhanced stabilizing magnetic field line curvature. The key 
advantages of spherical tokamaks include high beta operation with improved plasma stability.  
 
However, in spite of high beta, spherical tokamaks suffer from low plasma pressure due to the 
drastic change in the magnetic field across the plasma volume. Increasing the plasma pressure 
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would require strong magnetic field which can be achieved by installing superconducting 
magnets.  Despite the challenges STs may face as full scale fusion reactors, they have great 
potential to become compact fast neutron sources [MF11] for various applications including 
studies of neutron-material interactions and hybrid fusion-fission reactors. 
 
A program is proposed for research on such ST systems and can be divided into two phases.   
The first phase is the near-term capacity building phase followed by the establishment of the 
Canadian Magnetic Fusion Research Center. Such a Centre would require a new spherical 
tokamak system, and an opportunity exists to acquire such a tokamak. The device, called ST-40, 
is available from a private fusion R&D company in UK called Tokamak Energy, and could be 
brought to the University of Saskatchewan. The ST-40 (Figure 18) is a modern spherical tokamak 
which has many benefits including a compact size with lower initial capital investment and 
higher efficiencies. In particular, ST will use high temperature superconducting coils producing 
unusually high magnetic fields to confine plasma in a compact geometry. ST-40 will replace the 
nearly 30 year old STOR-M tokamak to significantly enhance our research capabilities and to 
train personnel for future fusion research.  
 
Future research topics on the ST-40 tokamak will focus on physics and engineering issues related 
to tokamak reactors, including better understanding of confinement physics and a novel fuel 
delivery technology based on compact torus injection. It should be pointed out that the ST 
design includes a D-T fuel option with the potential to be a fast fusion neutron source. 
Communication with Tokamak Energy has started for potential relocation of the ST-40 to the 
University of Saskatchewan began in August 2015. The associated costs of implementing this 
system at the University of Saskatchewan would be of the order of $25M. Annual budget for 
operation and research is estimated to be $5M with the following personnel:  5 PDF/RA, 5 PhD 
(RA), 2 Res. Eng. , 3 Technologists, Students (Total salaries ~$1M/yr). 
 

 
Figure 18. Life-sized diagram of the ST-40 tokamak 
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The second phase involves the design and construction of a spherical tokamak STOR-U as shown 
in Figure 19, with emphasis on the following aspects: (1) simplified tokamak design by removal 
of central solenoid and coaxial helicity injection for current start-up, (2) steady state operation 
through quasi continuous AC operation, (3) innovative technology development including 
Lithium coating of plasma facing components and fueling based on compact torus injection. 
STOR-U will be a medium-size tokamak and estimated cost will be in the range of $40M (for the 
hardware alone) and $100M (including building the axillary heating). The annual operating and 
research budget will be around $20M. 
 
This facility will be sufficiently large to become a national facility, with the involvement of 
groups across Canada, and would allow Canada to make significant contributions to magnetic 
fusion research, drawing significant international collaborations from other countries. 
 
 

 
Figure 19. Conceptual design of the STOR-U tokamak 
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B. Inertial Fusion  
 
The University of Alberta, ABCTech and the Alberta/Canada Fusion Technology Alliance have 
carried out a number of studies of the status of fusion energy development, and laser fusion 
energy approaches in particular, for the Government of Alberta over the past several years 
[IF13, IF14].  These have culminated in proposals for a 5 year capacity building fusion program 
followed by the development of a scale laser-fusion research institute in the following 5 year 
time scale.  The capacity building program is focused on knowledge transfer from other leading 
research programs around the world and will lead to 3 new University Professor positions, 5 
Research Associates and Post Doctoral Fellows, and training of 15 graduate students on an 
ongoing basis.  The strategy will be to hire and place people in a number of the leading research 
programs around the world to investigate various approaches to laser fusion primarily focused 
on advanced ignition techniques, and train Canadian-based High Quality Personnel (HQP) in the 
state of the art research.  Only a small amount of infrastructure would be funded in order to 
have a small resource base at the University of Alberta for laser and diagnostic development. 
 
Based on the expertise built up, a world leading program can be developed in laser fusion 
research and development.  At the same time, the USA will be reviewing the status of their laser 
fusion program and thus this would be a key assessment period. This gives the opportunity for 
Canada to take the lead in developing an international consortium to build a demo laser fusion 
reactor system since the laser fusion programs in many of the leading countries are tied to their 
weapons programs and thus are not applicable to an international civilian program.  The 
European HiPER project proposal, the Livermore LIFE proposal and the Japanese LIFT proposal 
are three concept proposals, currently sitting on the shelf, for such a civilian program but 
without any specific decision on the exact approach to be employed.  Of these, the HiPER 
proposal focused on advanced Shock Ignition appears to be the most promising currently. 
 
In order to be in a position to take a lead role in a civilian laser fusion program, Canada needs to 
rapidly build up its base of expertise in lasers, laser-plasma physics, inertial fusion physics and 
target development.  The $25M proposal for capacity building will be submitted to the Albertan 
government in the next month by the Alberta/Canada Fusion Technology Alliance (ACFTA).  The 
University of Alberta already has recognized the urgency in spearheading the laser-fusion effort 
by announcing the funding of four new academic professor positions in support of this area with 
advertising for hiring already under way.  However, a major buildup of infrastructure and a 
targeted development program are also required in order for Canada to be major player in this 
area.   Three immediate areas are required: a major laser development project to acquire the 
capabilities to build the required kilojoule class driver lasers; a significant laser-plasma 
interaction facility allowing the study of critical advanced ignition physics under real high energy 
plasma conditions; and a targeted program in shock ignition which currently appears to be the 
most favorable in terms of advanced ignition concepts.   
 
A laser development program could target the development of a high-efficiency 100-J, 10-Hz 
diode pumped laser system based on Yb:YAG ceramic laser disks.   Such systems look promising 
for achieving overall wallplug efficiencies of greater than 10% as laser drivers, and also would be 
useful for high energy industrial applications such as shock hardening of metal tools and 
surfaces.  Scaling to the 1kJ pulse level at a low repetition rate avoids large engineering costs in 
high efficiency cooling systems and high continuous power supplies.  Such a five year program 
would cost around $15M and employ 4 research scientists, 2 support personnel and train 2 
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graduate students per year. It is expected that this project would have a large potential for spin 
off applications in laser technology and applications generating many highly skilled jobs in the 
process. 
 
A laser plasma interaction facility (LPIF) is a necessary component of any internationally visible 
laser-fusion program.  Such a facility requires both a high energy laser to form the high 
temperature and high density plasma conditions similar to real fusion implosions, together with 
an intense short pulse laser to interact with and probe the plasma.  This would allow studies of 
the advanced ignition schemes of Fast Ignition and Shock Ignition for laser fusion energy.  A 
kilojoule laser and building expansion to house it would cost around $7M and the short pulse 
interaction laser would cost around $10M for a total project cost of around $26M.  This would 
be a leading world class facility for such studies and employ 6 researchers, 3 support personnel 
and train an additional 3 graduate students per year. 
 
A targeted program with worldwide collaborations to accelerate investigations of Shock Ignition 
would require on the order of $5M funding over 5 years.  The goal would be to participate in an 
international project to demonstrate Shock ignition using polar direct drive implosions on the 
LLNL NIF laser facility.  Such scaling studies at high laser energies should verify the physics 
understanding and scaling models under development at present, giving confidence on 
predictions scaled to full reactor systems.  Such a project would involve 2 researchers, 2 support 
staff and train an additional 2 graduate students. 
 
It is expected that the founding of large scale programs in fusion energy will lead to the 
engagement of NINT in the areas of reactor materials, optical materials, X-ray microscopy 
systems and target fabrication.  This involvement would require redirection of some of their 
funding resources into these directions.  
 
All these projects will involve the researchers and graduate student already funded by the 
Alberta capacity building project and will lead to an internationally visible critical mass of 
activity.  It would give a firm platform for a recommendation on participation or initiation of 
future expanded programs in the laser fusion area.  Many of the other groups in the country 
involved in laser-plasma studies could also join in these activities. 
 
These projects could also create opportunities to develop many spinoff application areas, 
particularly in industry and medicine.  The experience in similar high-technology projects around 
the world has shown that once a critical mass of activity is reached, spinoff companies can 
develop and prosper in the technological support base that has been established, leading to 
many valuable highly skilled jobs and the founding of new companies, some of which will grow 
to be technology leaders in their field in the future.  The long term economic payback from 
developing laser fusion energy has been assessed in an economic impact study for the LLNL LIFE 
power plant concept [IF15] showing large economic return on investment and growth in high 
technology jobs with the creation of a fusion energy industry.  
 
  



Fusion 2030: Roadmap for Canada 

23 
 

C. Alternatives 
 

i. Magnetized Target Fusion / Magneto-Inertial Fusion 
 
General Fusion is a world leader in magnetized target fusion research, and since 2009, has built 
a world-class fusion research team and facilities, Figure 20 and Figure 21.  However, the lack of a 
Canadian national fusion program and supporting research ecosystem has proven to be a 
significant handicap.  The last 20 years has seen a significant loss of capacity in fusion and 
plasma physics research in Canada, and consequently a major reduction in the potential for 
research collaboration and the training of highly qualified personnel.  
 

 
 

Figure 20. Prime Minister Trudeau visiting General Fusion 

 
The lack of vigorous fusion research programs in Canadian universities means that even where 
funding programs (such as NSERC and MITACS) exist to help support research collaborations 
between universities and private sector companies or other government institutions, the 
university researchers do not exist or the necessary facilities are not available in order to 
undertake the research work relevant to General Fusion. Hiring of highly qualified individuals 
has also proven difficult.  Generally hiring has to be done outside of Canada. However, many 
experienced scientists are well supported in academia in other countries and the risks of 
relocation, cultural differences, and the loss of benefits such as academic tenure compound to 
make it difficult to attract them.  In the last twelve months, General Fusion has hired physicists 
from the USA and Russia, and continues to work to secure a senior plasma scientist to help lead 
General Fusion’s research program. 
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A vibrant, healthy fusion research infrastructure and community in Canada is thus a critical 
element of the research ecosystem that a private company such as General Fusion depends 
upon in order to succeed.  National leadership and government funding to support academic 
research and educational programs in fusion energy could support multiple initiatives that are 
directly relevant to magnetized target fusion research.  Examples of initiatives include: 

 Additional faculty positions and new experimental and/or theoretical research centers 
at Canadian universities, with particular interest in compact toroid plasmas and the 
compression of magnetized plasmas. 

 Positions for post-doctoral researchers and graduate level students 

 Collaborative research partnerships between Canadian university researchers and 
private sector fusion research, including support for research sabbaticals in the private 
sector 

 Collaborations between Canadian researchers, both public and private sector, on 
international fusion research teams 

 

 

 
Figure 21. Research and Development team at General Fusion 

Support 
General Fusion is ready to contribute to this initiative.  Through Fusion 2030, General Fusion will 
continue to provide opportunities for researchers and students to work at its research facilities 
and look for opportunities to sponsor relevant research at Canadian universities. 
 
To accelerate the expansion or establishment of advanced plasma physics laboratories, 
particularly where relevant to magnetized target fusion, General Fusion will consider 
contributing equipment, technology and expertise, including compact toroid plasma systems, 
diagnostics, data analysis and control systems, and pulsed power technology.   
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General Fusion continues to build an Open Innovation program which includes research 
collaboration visits by experts individually, as well as for group workshops and crowdsourcing 
challenges.  Later in 2016, General Fusion will launch Aurora, a portal for research collaborators 
to access and analyze experimental data from General Fusion’s plasma systems. 
 

ii. Other Alternative Concepts 
 
In Ontario, HOPE Innovations plans to explore a concept based on multiple intersecting plasma 
arcs, stemming from research into the nature of high-current plasma discharges [AC6].  The 
company will be collaborating with researchers at the University of Ontario Institute of 
Technology on this project. HOPE sees a significant benefit arising from access to improved 
modeling and test facilities, as well as access to qualified staff to assist the company with further 
theoretical and experimental development of its concept. To date, much of its preliminary 
development work has been accomplished through collaborations with researchers in China. 
 
 
 

D. Fusion Power Plant Technologies 
  

While it is expected that Canada would make use of fusion energy science and technology 
developed within the international community, it is also anticipated that Canada could make 
very valuable contributions that build upon its historical experience and current expertise in 
relevant technologies.  Such technologies include those pertaining to fusion fuels (deuterium 
and tritium), fusion blankets, and potentially hybrid reactor technologies. 
 
In terms of capabilities, Canadian nuclear research facilities, such as Canadian Nuclear 
Laboratories (CNL) have several capabilities that could be harnessed to make advances in fusion 
technology.  Examples of CNL capabilities and facilities include the following: 
 

1. Expertise in hydrogen isotopes (hydrogen, deuterium and tritium), including production, 
storage and handling. 

2. Specialized, licensed facility dedicated to handling tritium and tritiated water.   
3. Licensed nuclear fuel fabrication and testing facilities that could be adapted for research 

on fusion blanket materials and components. 
4. Expertise in computational neutronics and radiation transport modeling.  

 
A major area of strength and proposed area of activity is in all aspects of tritium, production, 
extraction, storage, and material interactions.  Canada is a world leader in many of these areas 
at present, but much work needs to be done specifically for aspects related to fusion reactors.  
Because Canada does not have a national fusion program and has no formal linkages to ITER, 
Canada has limited access to the significant market for supplying tritium and tritium handing 
expertise to the ITER.  Groups in other countries, many trained by scientists from Canada, are 
taking over this leadership role.  It is very important that a new initiative should be established 
to ensure that Canada maintains its leadership in this area.   
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Other areas of strength include the development of improved processes for extraction and 
recovery of deuterium.  CNL is working to commercialize new processes for this at present.  CNL 
is also exploring options for harnessing the energy available in thorium, a fertile nuclear fuel 
that is nearly three times as abundant as uranium.  Hybrid fusion-fission reactors (HFFR) are a 
technology that could be used to convert thorium into fissile nuclear fuel for use in conventional 
nuclear reactors, for enhanced long-term energy security.  
 
The area of plasma-material interactions is very important for the successful development of 
future fusion reactors operating over long lifetimes.  These interactions range from plasma 
bombardment to radiation damage of materials.  The CNL expertise in neutron and radiation 
damage, combined with the expertise in plasma-materials interactions at various Canadian 
universities, could be exploited to tackle this area.  Test facilities of various sorts will be 
required, such as neutron sources at CNL, traditional plasma sources such as those produced by 
Plasmionique in Quebec, high energy density plasma particle sources as proposed by the 
University of Saskatchewan and laser-based high-energy plasma and particle sources as 
proposed by the University of Alberta.  The development and testing of materials can be 
accelerated considerably if multiple small samples are exposed at once to test conditions.  The 
analysis of response and material changes in such samples could be carried out using the 
diagnostic and analytic tools of nanotechnology, as exists in NINT, and extrapolating to 
macroscopic behavior with the development of robust analytic and numerical materials models.    
The current level of investment in hydrogen isotope technology at CNL is approximately $5M to 
$8M per year with 15 to 20 scientific staff working in the field.  The level of work in the areas of 
fusion blanket technology, and fusion reactor neutronics and radiation transport are non-
existent.  Effort related to hybrid reactor technology in relation to the use of thorium-based 
fuels is minimal, amounting to ~$100k, or 1/3 of a person-year.  Additional resources would be 
required at other institutions to develop the plasma materials testing capabilities  
 
Doubling the current investment in hydrogen isotope technology from $8M to $16M per year 
would move the program substantially forward and allow for more focused support for fusion.  
An additional sustained investment of $16M per year for at least 5 years would permit 
dedicating up to 40 scientific staff to focus efforts on fusion fuel blanket technology and hybrid 
reactor technology. 
 
 

E. Summary 
 
As can be seen above, there is a desire, commitment and a plan amongst Canadian researchers 
to build a strong internationally competitive program in fusion energy within Canada and put it 
back at the forefront of fusion energy development in the world.  A program to do so is shown 
in Figure 22 below.  This would require a combined commitment on the order of $25M per year 
over five years from federal funding, with expected matching from provincial sources to build 
and support programs in four key areas of Magnetic Fusion technology, Laser Fusion technology, 
Magnetized Target Fusion, and Alternative approaches to fusion and Power Plant technologies.  
This would lead to an establishment of a fusion energy demonstration project, likely in 
collaboration with international partners, which would build to a demo plant starting operation 
around the period of 2030.   
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Figure 22. Proposed Fusion 2030 Program 

 

5. Summary and Call for Action:  
 
The world is moving forward to developing and exploiting fusion energy at an accelerating pace.  
Other countries, particularly the newly emerging Asian economies, are starting to “up their 
game”, while Canada is still on the sidelines.  Canada is approaching a critical decision point, 
where it must decide if it wants to be a player in a future multi-trillion dollar clean-energy 
industry, or risk missing that opportunity while continuing to rely predominantly on its fossil fuel 
resource industry. 
 
Canada has always had the capacity to be an innovation leader and it should be using that 
capacity to build a new leadership role in fusion energy.  Some encouraging evidence of this 
capacity for innovation is seen with the current efforts by General Fusion in British Columbia.  At 
the same time, a key group of expertise still exists in magnetic fusion and laser fusion energy 
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technologies in Saskatchewan and Alberta respectively.  World leading expertise on tritium 
technology, fusion fuels, and neutron-material interactions exists in Ontario at the Canadian 
Nuclear Laboratories and various universities.  Smaller pockets of expertise exist on plasma 
diagnostics and on plasma-material interactions in a number of Canadian universities (such as 
the University of Toronto).  Major expertise exists in supporting areas such as materials and 
nano-materials development, including several universities and NINT, laser and photonics in 
numerous programs, particularly in Quebec and Ontario, and in large infrastructure project 
management in the private sector.  Thus, the foundation that Canada needs to build upon into a 
significant and effective national fusion program exists. 
 
As can be seen above there is the strong desire and commitment amongst Canadian fusion 
researchers to build a strong and competitive national fusion program.  This program would 
start with a capacity building phase of approximately 5 years to position Canada with basic 
expertise and facilities in the key areas currently advancing in fusion energy.  This visionary 
investment will ensure that Canada will have highly qualified people trained, and ready to 
participate and grow businesses in the international fusion areas.  This proposed initial 
investment will also help provide Canada with the necessary expertise to assess and advise on 
the next steps to expand this program.  The next steps could lead to significant participation by 
Canada in an international engineering demonstration fusion reactor.  It is estimated that an 
initial investment by the federal government on the order of $125M over five years ($25M per 
year), with a matching amount of provincial funding will be required. 
 
The second phase of the program would be ramping up to the participation in a demonstration 
reactor project.  It is too early to say at this point what this project would look like and a critical 
assessment review in 2020 would be carried out to assess the route or routes to follow based on 
the Canadian and International expertise at that time.  It is expected that a number of options 
for fusion energy will still be viable in the long run so during this phase it is still important to 
continue a core capability in the various main areas of fusion research including international 
scale facilities and training programs.  It would be expected that of the order of 1,500 highly 
qualified graduate degree personnel and an equal number of technical support personnel would 
be trained in the process.  At the end point it is expected that private companies will start 
building commercial reactors with all the knowledge gained in the demonstration reactor 
system leading to the growth of a multi-billion industry for Canada.  Many of the people 
involved will also pursue new application areas of spin off technologies which has always 
accompanied the growth of a new high technology sector.  Normally, such spin off technology 
sectors are economically as important as the main goal of a given focused project in a new 
technology area. 
 
Through this process Canada will build world leadership in a number of areas and build strong 
international linkages in the integrated high technology economy of the future. Most 
importantly, Canada will help accelerate the process of developing fusion energy with Canadian 
knowledge and expertise, contributing to ensuring long-term energy sustainability and security, 
while also protecting the environment, minimizing the emissions of greenhouse gases and air 
pollutants, and mitigating the effects of global climate change.  
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Fusion Science and Technology Spin-offs 
 
Fusion energy research is a frontier of science that draws upon a number of fundamental and 
applied science fields, ranging from several physics sub-disciplines to high performance 
computing and materials research.  Advances in these areas have in turn led to new 
developments and technologies in fields such as medicine and manufacturing, as well as areas of 
research that are science, technology and innovation priorities for Canada. 1 
 
[The figure below] illustrates some of the potential areas for science and innovation that are 
particularly relevant to Canada and Canadians, and assessments of technologies and 
applications that have come from fusion energy research.2 
 

 
  

                                                            
1 Canada’s science, technology and innovation priorities include: environment, natural resources and 
energy, health and life sciences, and advanced manufacturing. Innovation, Science and Economic 
Development Canada Seizing Canada’s Moment: Moving Forward in Science, Technology and Innovation, 
2014. Section 4.0, pp. 19-22.  
2 Fusion Energy Sciences Advisory Committee, U.S. Department of Energy Office of Science, Applications 
of Fusion Energy Sciences Research: Scientific Discoveries and New Technologies Beyond Fusion, 
September 2015. 
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Spin-offs include: 
 
Fuels: Fusion reactors run on the hydrogen isotopes deuterium and tritium, which are obtained 
from heavy water or ‘bred’ from lithium. Canada has a long history of expertise in the synthesis, 
storage and handling of deuterium and tritium as part of its domestic heavy water reactor 
technology program, and the successful deployment of the CANDU (CANada Deuterium 
Uranium) reactor in both Canada and internationally. The same type of expertise is also being 
applied to developing the use of hydrogen as a transportation fuel. In addition, hydrogen 
produced from the electrolysis of water, using high-temperature heat and electricity provided 
by fusion reactors, could also be used to create relatively clean and practical synthetic 
hydrocarbon fuels (such as methanol), using various types of carbon-based feedstocks (such as 
woody biomass from the Canadian forest industry, bitumen from Alberta’s oilsands, and coal 
from reserves in Saskatchewan and Nova Scotia).   
 
Policy: Fusion, as with any other major energy or complex infrastructure project, will require 
innovations in the public policy arena including public consultation and engagement, siting, 
safety and regulatory affairs.  The potential for fusion as a sustainable, high-density energy 
source will also have an impact on energy economics.     
 
Materials: Fusion research is a driving force in materials sciences and advanced manufacturing, 
making use of plasmas to develop novel materials, coat surfaces to improve their durability and 
strength, synthesize nanomaterials, and laser technology.  Plasma science, for example, is a key 
component of the semiconductor industry. A fusion reactor will require advances in material 
sciences that will lead to other innovations in materials, micromachining, resurfacing and 
manufacturing. 
 
Medicine: Research and innovation related to lasers and plasmas has led to (and can lead to 
further) new imaging methods, ways to treat cancers using radiation, methods of sterilizing 
medical equipment, and the use of lasers and plasmas as tools for ablative surgery.  Fusion 
research is also at the forefront of applying superconductor technology, which underpins the 
modern MRI diagnostic systems that have become pervasive in medicine. 
 
Health: Spin-offs from fusion research have included disposing of hazardous waste through high 
temperature vitrification that essentially turns waste into rock, as well as methods of protecting 
food from spoiling, and purifying water.  There are also the potential options of using a fusion 
reactor as a neutron source for irradiating specially-designed targets for producing medical 
isotopes, and also for destroying or transmuting radioactive minor actinides and long-lived 
fission products from spent nuclear fuel into stable or short-lived radio-isotopes for use in 
medicine.   
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Computing: The modelling and calculations required for simulating the behaviour of plasmas 
push the boundaries of computing power, leading to faster computers, new methods to 
simulate phenomena and techniques to handle large amounts of data.  Along with meteorology, 
fusion science and plasma physics simulation has been a driving force in advancing scientific 
computing and supercomputing applications for decades.  The techniques developed have 
advanced computational modeling in fields from aerospace to biochemistry. 
 
Engineering: A fusion power plant will drive advances in almost all fields of engineering and 
applied science, including automation and control systems, construction, and heat transfer for 
power and industrial applications. 
 
Other Technology: Fusion energy research is already leading to innovations in a variety of other 
fields including lasers and photonics, robotics, sensors, prosthetic joints and aerospace systems 
(satellite protection, propulsion). 
 
Summary: The development of fusion energy will be a driver for leading-edge innovation in 
virtually all of the industrial sectors of importance to Canada.  An investment in fusion will pay 
dividends in maintaining Canada’s position as one of the world’s leading technology developing 
nations. 

 


