

generalfusion®

INTRODUCTION

General Fusion (GF) is working to build a magnetized target fusion (MTF) power plant based on compression of magnetically-confined plasma by liquid metal. GF is testing this compression concept by collapsing solid aluminum liners onto plasmas formed by coaxial helicity injection in a series of experiments called PCS (Plasma Compression, Small).

Cross section of SPECTOR PCS experiment

• Shaft current (white arrows) provides toroidal field

- Mirnov probes (colored dots) measure poloidal and toroidal fields
- Inner electrode (Center Shaft) is shaped for 4:1 compression

LS-DYNA Liner Trajectory

- Eulerian VOF calculation
- Johnson-Cook model for aluminum 6061 liner (blue)
- Jones-Wilkins-Lee equation of state for chemical driver (red) • Parameters tuned based on field tests

MHD time-dependent mesh is generated from smoothed LS-DYNA result

MHD Simulation Of Plasma Compression Experiments

M. Reynolds, S. Barsky, P. de Vietien General Fusion Inc., Burnaby, British Columbia, Canada

59th Annual Meeting of the APS Division of Plasma Physics, Milwaukee, Wisconsin, October 23–27, 2017 UP11.00131

MHD SIMULATION WITH VAC

Shock capturing Eulerian Finite Volume code by Gábor Tóth.

In-house modifications:

- Improvements for strong toroidal fields (e.g., slope-limiting rB_{ϕ} instead of B_{ϕ})
- Coupling MHD to external circuit models
- Independent ion and electron temperatures
- Classical parallel heat transport

Transport:

- Spitzer temperature dependent resistivity
- Various models for radial heat transport, χ
- Constant viscosity for simplicity

Equations of the model

 $\frac{\partial \rho}{\partial t} = -\nabla \cdot (\mathbf{v}\rho)$ $\frac{\partial(\rho \mathbf{v})}{\partial t} = -\nabla \cdot (\mathbf{v}\rho \mathbf{v} - \mu_0^{-1}\mathbf{B}\mathbf{B}) - \nabla p_* + \nabla \cdot \mathbf{\Upsilon}$ $\frac{\partial \mathbf{B}}{\partial t} = -\nabla \cdot (\mathbf{v}\mathbf{B} - \mathbf{B}\mathbf{v}) - \nabla \times \mathbf{E}' + \mathbf{e}_{\varphi}f(r, z)V_{\text{gun}}(t)$ $\frac{\partial e_{\rm th,e}}{\partial t} = -\nabla \cdot (\mathbf{v} e_{\rm th,e}) - (\gamma - 1) e_{\rm th,e} \nabla \cdot \mathbf{v} + G_{\rm ei} + \mathbf{E}' \cdot \mathbf{J}$ $-\nabla \cdot \left(\frac{\mathbf{B}}{|\mathbf{B}|}q_{\parallel,\mathrm{e}} - \kappa_{\perp,\mathrm{e}}\nabla(kT_{\mathrm{e}})\right)$ $\frac{\partial e_{\mathrm{th,i}}}{\partial t} = -\nabla \cdot (\mathbf{v} e_{\mathrm{th,i}}) - (\gamma - 1) e_{\mathrm{th,i}} \nabla \cdot \mathbf{v} - G_{\mathrm{ei}} + \mathbf{\Lambda} : \mathbf{\Upsilon}$ $-\nabla \cdot \left(\frac{\mathbf{B}}{|\mathbf{B}|}q_{\parallel,i} - \kappa_{\perp,i}\nabla(kT_{i})\right)$ $\frac{\partial q_{\parallel,\mathrm{e}}}{\partial t} = -\nabla \cdot \left(\mathbf{v}q_{\parallel,\mathrm{e}}\right) - \frac{5}{2}n_{\mathrm{e}}\frac{kT_{\mathrm{e}}}{m_{\mathrm{e}}}\frac{\mathbf{B}}{|\mathbf{B}|} \cdot \nabla(kT_{\mathrm{e}}) - \frac{q_{\parallel,\mathrm{e}}}{\tau_{q,\mathrm{e}}}$ $\frac{\partial q_{\parallel,i}}{\partial t} = -\nabla \cdot \left(\mathbf{v}q_{\parallel,i}\right) - \frac{5}{2}n_{i}\frac{kT_{i}}{m_{i}}\frac{\mathbf{B}}{|\mathbf{B}|} \cdot \nabla(kT_{i}) - \frac{q_{\parallel,i}}{\tau_{q,i}}$

 $p_* = p + \frac{B^2}{2\mu_0}$; $p = (\gamma - 1)(e_{\text{th,e}} + e_{\text{th,i}})$; $\gamma = 5/3$ $\mathbf{J} = \mu_0^{-1}
abla imes \mathbf{B}$; $\mathbf{E}' = \eta \mathbf{J}$ $\boldsymbol{\Upsilon} = 2\mu\boldsymbol{\Lambda} \quad ; \quad 2\boldsymbol{\Lambda} = (\nabla \mathbf{v}) + (\nabla \mathbf{v})^{\top} - \frac{1}{3} \operatorname{Tr} \left[(\nabla \mathbf{v}) + (\nabla \mathbf{v})^{\top} \right]$

Compression is much slower than plasma dynamics

Physics	Time scale	Velocity
Compression	$ au_{ m compr} \simeq 130\mu{ m s}$	$v_{ m compr} \simeq 1.5 imes 10^3 { m m/s}$
Plasma sound	$ au_{ m s}\simeq 1.2\mu{ m s}$	$c_s\simeq 10^5{ m m/s}$
Alfvén wave	$ au_{A} \simeq 0.1\mu\mathrm{s}$	$v_{A} \simeq 10^6\mathrm{m/s}$

Time scale ordering:

 $\tau_{\rm compr} \gg \tau_{\rm s} > \tau_{\rm A}$

.:. Use quasi-static approximation to implement compression.

Every 100 time steps (1-10 ns) do the following:

First, transform physical quantities to compression invariants:

Invariant	
$\sqrt{g}\rho$	
$\sqrt{g}\rho v_i$	
√gBi	
$p/\rho^{5/3}$	

Conserved quantity mass angular momentum magnetic flux entropy

(tensors with respect to logical coordinates, \sqrt{g} is cell volume).

Next, update mesh geometry, replacing physical coordinates.

Last, transform back to physical quantities using new relationship between physical and logical coordinates.

SIMULATION OF PCS14

SUMMARY

Shaft current ramp:

 MHD simulations showed stabilizing effect • motivated inclusion in PCS14 experiment • compression was stable at least to RO/R = 2.5x

Modeling PCS14:

 MHD simulation initialized to conditions of PCS14 Matches decay of plasma current prior to compression Matches compression increase of plasma current until a compression ratio of about 1.7x, then experiment falls below simulation.

Comparing current profiles for compression: • Very different current profiles yield qualitatively similar results • Matching experiment will require additional phenomena

ACKNOWLEDGEMENTS

We thank Gábor Tóth for making VAC freely available. Thanks to Ken Fowler for useful discussions.