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A toroidal plasma compressed by a collapsing flux conserver is analyzed to reveal stable scenarios
of operation to high compression ratios. The resistive and ideal MHD stability is calculated in full
toroidal geometry, using the asymptotic matching method in realistic conditions, and comparing with
nonlinear simulations. The near edge current profile, controlled by toroidal field ramping during
compression, is shown to be critical to stability due to coupling between poloidal components of
the least stable mode. The extension of a length of shaft on axis is also found to be critical at
high compression, as the resulting good curvature region in magnetic field stabilizes pressure driven
modes that would otherwise be unstable. This work extends from previous studies, which initially
showed the existence of a stable scenario, to include findings of more extensive stable zones, detailed
effects of geometry, and nonlinear simulations of the instabilities. The nonlinear simulations of the
compression are consistent with the linear analyses, confirming both the conservation and stability
properties.

I. INTRODUCTION

There has recently been a renewed interest in Mag-
netized Target Fusion (MTF) as a practical fusion con-
cept. Perhaps the most promising of these experiments
proposes to use toroidal plasma targets that are heated
via compression to fusion conditions. The concept of us-
ing compression for the heating of plasmas dates back
decades [1]. Recently, experiments at General Fusion
have explored the viability of this concept [2], with com-
pression of a spherical tokamak proposed for future large-
scale devices [3]. An important requirement for successful
MTF is that the plasma remain magnetohydrodynam-
ically (MHD) stable during the compression. However,
there are a number of compression effects that may cause
the plasma to become unstable. These include the change
of current profile due to evolution of the flux conserver
geometry and the increase of the plasma β ≡ 2µ0P/B
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(β is a measure of the thermal to magnetic energy den-
sity ratio). In order to properly design and successfully
operate an experiment demonstrating the attainment of
fusion conditions in MTF it is necessary to understand
the plasma stability for the entire evolution of realistic
geometric compression scenarios.

The heating of tokamak plasmas via magnetic com-
pression has been studied experimentally on several con-
ventional tokamaks, including the ATC experiment [4–
6], TUMAN-3M [7], TOSCA [8], TFTR [9, 10] and JET
[11, 12]. In particular, the ATC experiment was designed
specifically for this purpose, producing significant com-
pression ratios, and successfully demonstrating much of
the basic concept. However, results from those exper-
iments indicated the onset of resistive MHD instabili-
ties, leading to disruptions and preventing access to the
high confinement regimes. Some of the earliest seminal
work into the theory of the MHD tearing mode [13–15]

emerged contemporaneously. While ideal MHD instabil-
ities tend to grow rapidly irrespective of the resistivity,
resistive MHD instabilities can grow more slowly, due
to magnetic reconnection (i.e. tearing) occurring at reso-
nant surfaces. Nevertheless, both can be disruptive given
time to grow, and must be avoided. The stability of these
modes depends on the detailed structure of the underly-
ing equilibrium, and subtle physics effects in the plasma,
such that computing it is not a trivial matter even to-
day. While reduced theoretical analyses provided some
insight at the time of the ATC experiments, the com-
putational tools to accurately compute the stability had
not yet been developed. The design of a controlled com-
pression experiment that avoided these instabilities was
evidently elusive.

The renewed interest in compression of tokamak plas-
mas is motivated by the many advantages of pulsed op-
eration detailed in Ref. [3]. A prime advantage is that
with the robust magnetic surfaces possible in toroidal ge-
ometry the energy and particle confinement times can be
longer than mechanically achievable compression times
making it possible to obtain fusion net gain (at the sys-
tem level) before the plasma is extinguished by interac-
tion with the wall. This, of course, requires the magnetic
configuration to be one that remains stable during com-
pression.

In Ref. [16], we presented an initial stability analysis
that indicates a resistive MHD stable scenario of com-
pression exists given carefully chosen plasma profiles and
shaping. The study presented results of ideal and re-
sistive MHD stability analyses of compression scenarios
using realistic constraints to compute the equilibrium
states. Toroidal equilibria produced with the CORSICA
code [17] are analyzed with the DCON code [18]. The
physics constraints, geometric structures, and magnetic
equilibrium structure are designed to accurately capture
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those of a proposed experimental MTF device with ad-
vantageous stability properties. The main results were
presented in a parameter space of safety factor q0 vs com-
pression ratio C = R0/R, where R is the outboard mid-
plane radius of the device, and R0 is the initial R before
compression. In this space a stable “corridor” was found
where a trajectory of a compressed experiment would
narrowly avoid all computed instabilities. Control of the
near edge current profile was found to be critical to the
overall stability. Also, a nonlinear axisymmetric simula-
tion is presented which indicates the degree of conserva-
tion and validity of the constraints used in the study. The
results indicate that stable MHD pathways exist to high
compression, affording insights that will be critical to the
design and operation of any successful MTF device.

The main goal of the present work is to expand on
the previous results, showing further stabilizing effects of
edge current and geometry, and confirming the central
result with nonlinear simulation. The resulting scenario
has a wide stable corridor that is more experimentally
viable than that of Ref. [16]. In addition, the stabilizing
effect of the extent of a length of shaft on the geomet-
ric axis is shown to be critical to the stability at high
compression, through comparison of two cases with and
without the extension of shaft. Finally, new nonlinear
simulations are presented using the VAC code [19], in-
cluding non-axisymmetric instabilities, where it is found
that an n = 2 mode is unstable when the simulation is
run in a parameter regime where linear theory indicates
it should be. The simulations likewise remain stable in
the stable corridor. These results provide further insight
into the potential for compression and heating of toka-
mak plasmas while avoiding MHD instabilities.

The paper is organized as follows. In Sec. II we review
the basics of compression, and its effects on confinement
and the scaling of equilibrium quantities, while in Sec. III
we review the constraints imposed to calculate equilibria
in this study. In Sec. IV the results of stability analyses
are presented, including the effects of near edge current
profile changes and geometric changes to the confinement
region. In Sec. V nonlinear MHD simulations of the com-
pression are presented which indicate that the mode sta-
bility is consistent with the linear calculations. In Sec. VI
the overall results are discussed, including a discussion of
how the experiment could avoid the instabilities and re-
main stable.

II. THE EFFECT OF COMPRESSION

A more extensive discussion of the compression physics
appears in Ref. [16], while here we briefly review the
main points. The basis of magnetic compression is
in Alfvén’s frozen-in theorem. Magnetized collisionless
plasma moves together with the magnetic flux [20] and so
compression of magnetic flux also compresses the plasma.

In a plasma with nested flux surfaces the safety factor
q, which measures how helical the field is as it winds
through the torus, is connected to magnetic flux through
q = dΦ/dΨ, where Φ and Ψ are the toroidal and poloidal
magnetic flux of the surface [21]. Therefore the q-profile
is conserved during compression. Neglecting transport
losses and assuming shock-free compression, the entropy
profile S(ψ) of the plasma is also conserved during com-
pression, while the temperature increases as described by
thermodynamics.

Because the compression is slow compared to ion mo-
tion (i.e., adiabatic in the mechanical sense) but fast
compared to the cross-field transport of magnetic flux,
particles, and heat (i.e., adiabatic in the thermodynamic
sense), we can model the effects of compression with-
out loss of magnetic flux, magnetic helicity, thermal en-
ergy, or particles, or change of entropy, to a good ap-
proximation. The magnetic compression experiments de-
scribed above have exhibited this “adiabatic compresson”
to varying extents [4–11].

Scaling laws for adiabatic magnetic compression of a
tokamak plasma of major radius R and minor radius a
were first given by Furth and Yoshikawa [22]. These laws
are based on holding a2Bt fixed due to the toroidal flux
conservation, holding aBt/RBp fixed due to conservation
of q, and holding T/n2/3 fixed assuming thermally adi-
abatic compression. Some of the resulting geometrical
scalings are

T ∝ a−4/3R−2/3

It ∝ R−1 (1)

βN ∝ a−1/3R−2/3,

where It is the toroidal current and βN ≡ aBβt/It is
the Troyon factor that indicates how close the plasma
is to major destabilizing MHD activity. The experiment
should exhibit this scaling in equilibrium quantities along
its trajectory of constant q if the geometry is compressed
in such a way as to be well described by a andR variation.

III. EQUILIBRIUM CONSTRAINTS DURING
COMPRESSION

For this study, Fig. 1 represents a proposed MTF ma-
chine, simplified for the purpose of calculation. In this
experiment a shell of liquid lithium mechanically com-
presses the plasma from the outboard direction. The
magnetized plasma with closed flux surfaces is confined
by currents induced in the surrounding liquid metal shell
and through the shaft, which conserve the magnetic flux.
The fields thus scale in much the same manner as in the
magnetic compression experiments, albeit mechanically
compressed.

In Fig. 1, the outboard midplane radius of the flux
conserver starts at Rfc(t = 0) = 1.5 m. The radial com-
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FIG. 1. CORSICA equilibria showing compression of plasma
by a converging liquid metal shell. Contours indicate plasma
current intensity, J · B/B2. The solid metal is dark gray and
liquid metal is light gray.

pression ratio is defined as C ≡ Rfc(t = 0)/Rfc(t). The
central shaft of the device is fixed at radius Rsh. For
Rsh/Rfc � 1 and given a nearly spherical compression,
the initial geometric evolution will be nearly self-similar,
making a,R ∝ Rfc and T ∝ 1/R2 in the above scalings.
However, at high compression, as Rfc(t) approaches Rsh

and the aspect ratio R/a changes, the scalings will follow
Eq. 1. There will also be other geometric effects (e.g.,
change of elongation) that will cause the scaling to devi-
ate from that of Furth and Yoshikawa, which is clearly
observed in computations.

We use an approach based on stability analysis of
Grad-Shafranov equilibrium states. The equilibrium
state is relevant because the Alfvén time in the exper-
iment is always much shorter than the compression time.
Thus, the experiment is in quasi-equilibrium throughout
the compression. Starting from an initial plasma equi-
librium in uncompressed geometry, subsequent equilibria
in compressed geometries are generated using CORSICA
with pressure given by the entropy constraint, while
toroidal field and current are given by the constraint on
q.

Fig. 2 (a) shows an initial profile of pressure and q
as a function of normalized poloidal magnetic flux for a
typical shaft current of 1.9 MA and a plasma current of
1.55 MA. As the shaft current is varied the plasma cur-
rent and pressure are held fixed and the q profile varies
accordingly. The core of the two dimensional cross sec-
tion shown in Fig. 1 is at (ψ̄ = 0), while (ψ̄ = 1) is
at the outer boundary of the plasma. The q profile is re-
versed on axis with an off-axis minimum at low shaft cur-
rent (≈ 500 kA), but is monotonic at high shaft current
(≈ 2 MA). The q profile shown in Fig. 2 (a) is monotonic
at 1.9 MA.

The equilibria are limited on the outboard midplane,
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FIG. 2. Profiles versus normalized poloidal flux of safety fac-
tor q in black and pressure in blue (a) of an uncompressed
equilibrium, and λ ≡ dF/dψ (b) with no compression C = 1
in black and with C = 6 in blue. The initial shaft current is
1.9 MA. The edge region develops a reversed skin current to
maintain the q profile. Three λ profiles at compression C = 6
have varying edge structure in cases A, B and C. The struc-
ture of the edge λ can be varied in experiment by controlling
the shaft current during compression.

with a thin vacuum region of 5% of the major radius
throughout the compression. This is intended to model
experimental observations of this region during compres-
sion, where a cold plasma is observed surrounding the
core plasma. This is analogous to the vacuum region
modeling in conventional tokamak stability analyses.

The shaft is solid metal in this model to simplify its
treatment during compression. In a fusion power plant
the high heat flux and pressure experienced by the shaft
would likely make a solid shaft impracticable. Instead,
a liquid metal shaft could be used. A realistic model
would need to include heating and compressible MHD
flow of the liquid metal for both the liner and the shaft.
However, the effect on plasma geometry, and hence the
stability analysis, is expected to be small in the trajectory
leading up to fusion conditions.

The shape of the pressure and q profiles are largely
fixed throughout compression, but the λ profile is not
(λ ≡ dF/dψ with F = rBϕ; for low plasma beta the
λ profile is related to the parallel current density pro-
file through λ ≈ µ0J · B/B2). In Fig. 2(b) the λ pro-
files of equilibria at initial (C = 1) and high compression
(C = 6) are shown. An initial λ profile that peaks outside
the core region in mid-radius proved both to be advan-
tageous in terms of overall stability during compression
and experimentally viable as an initial state. The core
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radial compression C

FIG. 3. Temperature at the magnetic axis, plasma current,
and normalized beta taken along compression trajectory (a
horizontal line in Fig. 4 with q0 ≈ 1.76. Dashed lines show
the scalings described by Eqs. 1.

region of the λ profile peaks slightly during compression.
However, at high compression λ reverses near the edge
of the plasma, effectively forming a skin current, due to
the q profile constraint and changing geometry. This re-
versed current can be induced in both experiment and
resistive MHD simulations. Note the plasma in the edge
is cooler and therefore more resistive, so fine scale edge
current structure tends to be dissipated. The series of
Grad-Shafranov equilibrium states generated assuming
conservation of q does not account for this effect, being
a solution to the ideal MHD equations that does not in-
clude resistivity. To explore the effect of varying the edge
structure in the current profile, series A, B and C were
generated with varying degrees of smoothing applied to
mimic the effect of resistivity. The q profile is weakly af-
fected by these variations. However, the depth and am-
plitude of the skin current was found to be critical to the
stability of the plasma, in particular because gradients
in λ across resonant q surfaces tends to be destabilizing
[15].

Fig. 3 shows βN , plasma current It, and temperature T
of an equilibrium with q0 = 1.76 as a function of C. De-
spite the soaring density and temperature, the βN of the
equilibria remain reasonable, giving us some hope that
we can maintain a stable plasma throughout compres-
sion. The scaling relations in Eqs. 1 are plotted (dashed
lines) for comparison; initially the computed quantities
scale as Eqs. 1, but differ at high C as the elongation
increases and the volumetric compression rate decreases.

During compression, the natural increase of shaft cur-
rent induced by the conservation of toroidal flux can be
supplemented by an external applied voltage to control
its rate of increase. Any such action will naturally induce
a poloidal skin current in the plasma edge which will have

a parallel component. Thus, to some extent, it is feasible
to control the structure of λ near the edge during com-
pression. Therefore, for this study, we varied the edge
gradient of λ(ψ̄, C) to study the effect on stability. The
C = 6 profile shown in Fig. 2(b) is a case found to be
both sufficiently stable and consistent with experimental
conditions.

Fig. 2(b) shows three profiles of λ at the same com-
pression ratio of C = 6 and the same initial conditions
before compression with q0 = 1.75, but with different
gradient in the λ profile near the edge during compres-
sion. Though the variation in λ appears moderate, the
stability can be strongly affected, as shown below and in
Ref. [16].

IV. STABILITY CALCULATIONS

We analyze the equilibria calculated from CORSICA
with Resistive DCON (RDCON) [23]. RDCON calcu-
lates the ideal MHD perturbed potential energy, δW ,
and the resistive MHD stability based on the method
of matched asymptotic expansions in full toroidal ge-
ometry, where the plasma is partitioned into the ideal
outer region and resistive inner region around each ratio-
nal q surface. The zero-frequency ideal MHD equations,
governing the outer region, are cast as a Euler-Lagrange
equation [24] for a given toroidal number n. The poloidal
mode structure is represented as a spectrum of compo-
nents with wave numbers m. Both the ideal and resistive
MHD stability of a single n mode are described by the
global eigenmode solution which couples all m compo-
nents together for a single n.

In general, the equilibrium states we seek must be both
locally and globally stable. Perhaps the most fundamen-
tal stability consideration is given by the local resistive
interchange stability, which is defined by the energetic
favorability of the swapping of neighboring regions of
plasma field lines. The local resistive interchange pa-
rameter DR is a measure of this instability and must
remain negative [14]. In ideal MHD, the interchange can
occur without breaking field lines, giving a closely re-
lated stability criterion represented by DI which must
also remain negative. Both quantities depend on the lo-
cal equilibrium characteristics, such as pressure gradient
and magnetic shear. For the equilibrium and stability
profiles and geometries presented here, both quantities
remain negative at all surfaces, which leaves the global
stability to be considered.

Both DI and DR are calculated as flux averaged quan-
tities around the poloidal direction, are functions of mi-
nor radius of the plasma, and appear as driving terms in
the global stability calculation [14, 25, 26], representing
the local contributions to the global stability. In the cal-
culation, the field line curvature contributes to the local,
and thereby global stability [27].
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The stability of the global solution during compression
bears some analogy to the Kadomtsev criterion in cylin-
drical Z-pinch experiments [28], where the pressure gradi-
ent and magnetic field shear analogously drive global in-
stabilities. However, the equilibria here remain tokamak-
like throughout the compression. In general, tokamak
configurations tend to have favorable (stabilizing) field
line curvature on the inboard or high field side of the
poloidal cross section, and unfavorable (destabilizing)
curvature on the outboard or low field side. It is for this
reason that modern conventional tokamaks, such as DIII-
D [29] and ITER [30], are designed in D-shaped cross sec-
tions, placing more poloidal extent in the good curvature
inboard side of the cross section. The stabilizing influence
of the inboard good curvature region is enhanced at low
aspect ratio, and it is in part for this reason that spheri-
cal tokamaks such as NSTX-U [31] and MAST [32], also
with D-shaped cross sections, exhibit such high stability
limits in β. In the results presented here, it is for this
same reason that exposing a length of shaft is found to be
stabilizing to the highly compressed states, as discussed
below, by making them more D-shaped and extending
the good curvature region.

At each surface in the plasma where the safety factor
matches the ratio of integer poloidal and toroidal wave
numbers, q = m/n, a resonance occurs. Such surfaces
will form resonant layers in the plasma, with highly lo-
calized currents sensitive to the resistivity of the plasma.

If the equilibrium is ideal stable, the free energy avail-
able to a resistive mode is described by the local stabil-
ity index ∆′, calculated from the resonant response at
each layer. The assembly of all rational surfaces of a
given toroidal wave number n then produces the matrix
of non-ideal stability indices, e.g., the ∆′ matrix.

Each layer response is then calculated including resis-
tivity based on the Glasser, Greene and Johnson model
[14], to form a diagonal matrix of layer response func-
tions. In short, the eigenvalue problem for the growth
rate can be expressed as finding the root of a determi-
nant |D′ −D(Q)| = 0 where D′ is the matrix of stability
indices calculated from the global mode structure, D(Q)
is a diagonal matrix of layer responses at each rational
surface, and Q is the complex eigenvalue, the real part
of which is the growth or decay rate of the mode. The
detailed description of the whole process in RDCON can
be found in [23].

A. The stable corridor

Given an initial set of equilibria with varying shaft
current, at fixed plasma current and pressure, we then
define a two dimensional space of equilibria by compress-
ing each of these initial states and employing the physics
constraints discussed to determine each equilibrium and
test its stability. Fig. 4 shows the equilibrium and stabil-

ity results of this analysis for three different constraints
on the sharpness of the edge current profile, as shown
in Fig. 2(b). Cases A, B and C in Fig. 2(b) refer to
Figs. 4(a), (b) and (c) respectively. The left hand axes
of Fig. 4 show the q0, the safety factor at the magnetic
axis. The equilibria are generated in equal increments of
1/R, making the high compression region highly resolved
in compression steps. The shaft current during compres-
sion is shown in magenta contours. The plasma temper-
ature, and points on the safety factor profile: qmin, and
q95, appear as dashed lines. The plasma β increases with
C despite the increasing toroidal field, reaching values of
∼ 0.3 at low shaft current and ∼ 0.15 at high shaft cur-
rent for C = 8 (not shown). Horizontal paths through
this space represent adiabatic compression trajectories,
such as Fig. 3. Note that realistic compression trajec-
tories that include losses will deviate from a horizontal
line in this space, especially as the edge current changes.
However, these deviations are generally expected to be
small, as is shown below through MHD simulation.

In Fig. 4 the growth rate for the n = 1 mode is plot-
ted as colored contours. Ideal instability is shown in
red. The ideally unstable region for q0 . 1.25 is pri-
marily due to the m/n = 1/1 mode; but when qmin > 1,
the non-resonant 1/1 component couples into the higher
m > 1, n = 1 components to drive instability. We note
that other profile and geometric structures explored were
found to be susceptible to ideal pressure driven instabil-
ities at high C, highlighting the advantageous properties
of the profiles and geometric structure used here. An ex-
ample of a more unstable configuration is discussed be-
low. A second ideal unstable region is found just below
qmin = 2, where the q = 2 surface approaches the axis,
and the q = 4 surface enters the plasma at the edge,
intermittently unstable depending subtly on the details
of the equilibrium, hence the dashed line. Though this
mode is expected to be rather benign to the confinement,
the experiment would avoid this instability.

Fig. 4 shows that a strongly resistive MHD unstable
zone over a wide range of C, just above the dotted q95 = 2
line for q0 ≈ 1.4, for all three cases. This is a 2/1 dom-
inant mode and would likely be highly disruptive in ex-
periment. As the initial shaft current or q0 is increased,
however, this mode becomes stabilized and a stable chan-
nel appears to high compression near q0 ≈ 1.75. A sec-
ond unstable region appears above q0 ≈ 1.85 for Case
A, and above q0 ≈ 1.95 for Case C, indicating that as
the edge current is flattened, the corridor widens signifi-
cantly. This upper unstable region is a m/n = 3/1 dom-
inant mode, with coupling between the q = 2 and q = 3
resonant surfaces on its lower end, while above qmin = 2
the non-resonant m = 2 component plays a role, and
coupling to the q = 4 surface becomes more important.

The three stability results shown in Fig. 4(a)-(c) cor-
respond to the varying edge current constraint, changing
the structure of the edge current as shown in Fig. 2(b).
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FIG. 4. Stability results from an RDCON analysis of n=1
modes as the edge current structure is changed. Ideal insta-
bility is shown in red, resistive instability in green/yellow, and
stability in dark blue. Dotted white contours indicate plasma
core temperature in keV. Safety factor values qmin and q95
are indicated by black and white dashed contours. Magenta
contours show shaft current in MA.

As the edge current gradient is reduced, the stable corri-
dor is widened. The structure of λ does not vary greatly
in these figures as a function of q0, instead it mainly
varies in amplitude with q0. The main effect on stability
in varying initial shaft current and q0 is to change the
radii of the rational surfaces and the coupling between
mode components. The q profiles tend to be flattened or
slightly reversed in the core, as shown in Fig. 2, with ra-
tional surfaces near the edge. With lower gradients in λ
near the edge, the stable corridor widens between where
the 2/1 dominant mode and the 3/1 dominant mode are
unstable, as seen in Fig. 4(c).

Fig. 4 portrays results for three cases with moderate
edge current. Larger edge current and, in particular, gra-
dients in λ across surfaces enhance the coupling between
the q = 2 and q = 3 surfaces, destabilizing the modes
and closing off the stable corridor. Ref. [16] details one
such case.

Two trajectories obtained by using the VAC code
[19] to evolve the resistive MHD equations in time-
dependent geometry are superposed on the RDCON re-
sults in Fig. 4(c). In these 3D simulations the resistive
n ≥ 1 stability of the plasma is included, as discussed
below. However, even just the axisymmetric profile evo-
lution and conservation during compression are informa-
tive. The shaft current and pressure and λ profiles from
the uncompressed equilibrium represented in Fig. 4 are
used as initial conditions for the VAC simulations. We
note that the nearly horizontal trajectory confirms that q
is reasonably constant during the 3 ms long compression
in a realistic simulation. The nonlinear stability of these
simulations is discussed in detail below in Sec. V.

B. Stability Dependence on Shape and Profiles

In Fig. 5 two series of boundary configurations are
shown over a compression factor of C = 8. Both outer
boundaries have the same angle off the central axis of
π/6. In the first the boundary has no flat region along the
shaft, while in the second the boundary has a 20 cm sec-
tion that is flat along the shaft. This central section will
change the stability of the compressed equilibria, while
having little effect on the initial equilibria or the exper-
imental start up. The results shown in Fig. 4 use the
boundary configuration in Fig. 5(b), including the flat
section on the shaft.

The stability of the equilibria for both of these series of
shapes, for n = 1, 2 and 3, is shown in Figs. 6 and 7. The
equilibria for both start from T = 400 eV and n = 5 ×
1019 m−3, which is typical of the temperature and density
of the Ohmic heated plasmas before compression. And,
the profiles are initially identical. Note that Fig. 7(a) for
n = 1 repeats from Fig. 4(c) in comparing the effect of λ
near the edge.

At high compression, the longer shaft region provides
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(a) (b)

FIG. 5. The boundary shapes of two series of equilibria vary-
ing the length of the central shaft. This affects the stability
most at high compression.

a significantly larger poloidal region of good magnetic
curvature, causing a stabilizing effect. This effect can be
seen by comparing the right sides (i.e. C > 5) of Fig. 6
with right sides of Fig. 7. The left side of these figures,
C < 4, are similar for both shapes, as early in the com-
pression sequence, the relatively small difference in the
shaft length has little effect. Later in the sequence, at
high compression, the case with no shaft length is in-
creasingly more unstable with compression.

With no flat region along the central shaft, at higher
compression C > 4 unstable regions extend to lower com-
pression as shown in Fig. 6. The vertical and tilt modes
are held stable due to the 30 degree walls at top and
bottom. However, with less good curvature, kink and
tearing modes, with a ballooning component, are driven
unstable. Following any horizontal trajectory from left
to right in Fig. 6 would eventually have a tearing mode
unstable with increasing growth rate, with several tra-
jectories indicating entry into an ideal unstable region.
The ballooning component to the mode is evidenced as
the higher n is more unstable for the lower q0 cases, not-
ing that Fig. 6(c), with n = 3 is ideal unstable at lower
compression and over a wider region than Fig.6(a) with
n = 1. Also, the ideal unstable zones are increasing in
width at higher compression. Clearly there is no fully
stable pathway with no shaft length exposed. With the
shaft exposed, the configuration is stable for all n = 1, 2
and 3, in a range of 1.75 < q0 < 1.9, for all compression
C, as shown in Fig. 7. And, the n = 2 and 3 likewise re-
main stable as the good curvature region along the shaft
stabilizes the mode.

V. SIMULATIONS OF COMPRESSION

The linear stability of the configuration in Fig. 5(b),
shown in Fig. 7, informs us about what to expect from
a nonlinear MHD simulation of compression with these
boundary shapes. Simulations with the VAC code [19]
were conducted to test the prediction in Fig. 7, includ-
ing the length of shaft in the geometry, starting with the
same profiles on the left hand side of Fig. 7, and com-
pressing the boundary while allowing the conservation
in the MHD equations to manifest the plasma heating
during compression.

The results from two simulations are presented in
Fig. 8, one with q0 = 1.5 (run A) and the other with
q0 = 1.75 (run B). The simulations include 32 toroidal
planes to capture toroidal perturbations. From Fig. 7,
in these simulations the resistive stability of the plasma
should and does show a fast growing n = 2 instability for
the q0 = 1.5 case.

The compression in VAC is implemented by Strang
splitting the operations of resistive MHD and of mor-
phing the geometry along the sequence in Fig. 5(b).
The shaft current, pressure and λ profiles from the un-
compressed equilibrium represented in Fig. 2 are used
as initial conditions for the VAC simulation. Resistive
evolution is modeled assuming Spitzer resistivity with
Zeff = 1.5. Momentum transport is modeled using a
uniform isotropic viscosity µ ≈ 7.5× 10−8 kg/m/s. This
value is 10 times lower than the viscosity that stabilizes
the plasma instability and approximates a realistic mo-
mentum transport in the simulation, while zero viscosity
is assumed in the linear stability analysis. The magnetic
Prandtl number in these cases is Prm ≡ ν/η ≈ O(10)
to O(100), where ν = µ/ρ is the viscous diffusion co-
efficient, ρ is the mass density, and η is the resistive
diffusion coefficient. Classical perpendicular heat trans-
port was used in the simulations as a physical approx-
imation to the adiabatic compression assumption used
throughout this paper. Extensive simulations from our
previous work [16] indicate that q0 remains roughly con-
stant during compression even for anomalous transport
with χe up to 20 m2/s and χi up to 5 m2/s. Parallel
heat transport was implemented using a non-Fourier (hy-
perbolic) method enabling physically realistic fast trans-
port (the ratio of cross to parallel thermal conductivity is
O(10−10)). To facilitate a numerically stable simulation
the electron sound speed used in the parallel transport
and the ion sound speed used in the MHD are artificially
lowered by a factor of 10 and the Boris fix [33] is used
with a reduced speed of light c′ = 5 × 105 m/s. The
boundary conditions imposed at the metal walls include
zero flux diffusion, zero mass flux, and a low temperature.
The thermal conduction to the cold wall results in a cold
layer of plasma near the wall. A similar cold plasma
layer is found in models of Z-pinch experiments [34]. Ini-
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FIG. 6. The n = 1 (a), 2 (b), and 3 (c) stability from RDCON
of the boundary shapes in Fig. 5(a), with no length along the
central shaft. Ideal unstable regions are red, while all other
regions show resistive instability in green/yellow, and stable
in dark blue.
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FIG. 7. The n = 1 (a), 2 (b), and 3 (c) stability from RDCON
of the boundary shapes in Fig. 5(b), with 20 cm along the
central shaft. Ideal unstable regions are red, while all other
regions show resistive instability in green/yellow, and stable
in dark blue. Trajectories from two VAC MHD simulations
are shown as blue lines.
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tial ion density was uniform with ni = 3× 1019 m−3 and
ne = Zeffni. Initial temperatures at the magnetic axis
were Te = Ti = 400 eV, consistent with the linear cal-
culations. More realistic transport modeling is planned
for future work, in part to study the extent to which this
would change both the equilibrium constraints and the
stability. However, the present implementation both ex-
hibits adiabatic-like confinement during compression and
remains computationally tractable.

The VAC simulations exhibit a high degree of q con-
servation, which manifests as nearly horizontal trajec-
tories in the figures. Realistic compression trajectories
that include 3D effects and losses will naturally traverse
the maps in a somewhat more complex way, especially
as the edge current changes. However, deviations from a
horizontal line are generally expected to be small.

The resulting perturbed magnetic fields were Fourier
analyzed into a spectrum of toroidal components with
wave numbers n, and the resulting energy in each of the
first three non-axisymmetric components n = 1− 3 as a
function of compression ratio R0/R is shown in Fig. 8.
The magnetic energies in Fig. 8 are normalized to the
n = 0 energy, which removes the effect of the increasing
overall magnetic energy with compression and makes the
stability of the modes in the simulations more intuitively
accessible. The upper graph, for q = 1.5, shows that a
mode with n = 2 becomes unstable at radial compression
ratio C = 3, and saturates relative to the background
field. The lower graph, for q = 1.75, clearly indicates
that no modes are unstable.

Note that the VAC trajectory shown in Fig. 7 indicates
that although the n = 2 mode should be most unstable
in the simulation, which it is, there should also be slow
growing n = 1 and n = 3 modes. Though the n = 1
and 3 energies do not drop off in Fig. 8(a) as they do
in Fig. 8(b), the manifestation of the linear growth is
not clearly separable from the nonlinear coupling due to
the n = 2 mode. More detailed study of the nonlinear
MHD trajectories in the space of the linear results will
continue, but this result supports a verification of the
linear results, and shows how they manifest in nonlinear
simulation and, under the right conditions, experiment.

VI. DISCUSSION

The results shown here indicate that toroidal MTF
compression experiments can be kept stable to ideal and
resistive MHD instabilities through to high compression.
Extensive MHD analyses with DCON were conducted,
where it was found that including a small length of shaft
allows for stability at high compression, while not affect-
ing the early compression stages, which it is energeti-
cally favorable to compress self similarly. This stability
comes through good curvature region along the shaft.
The departure from self similar compression also serves
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FIG. 8. Magnetic energies of modes 1-3 as calculated in VAC.
The top graph (run A) has q = 1.5, and is in the unstable
zone. The bottom (run B) has q = 1.75, and is in the stable
zone.

to prevent higher βN that would make it more difficult
to maintain stability. The structure of the near edge cur-
rent is also shown to be critical to the ideal and resistive
stability. Extending from Ref. [16], a wider corridor of
stability is found by nearly zeroing out the edge λ profile.
The edge current can be controlled by the rate of ramp-
ing shaft current, and the slight adjustments necessary
to maintain stability appear viable.

Nonlinear MHD simulations with the VAC code in-
dicate that the linear instabilities are manifested in the
nonlinear evolution. Specifically the n = 2 instability was
observed in simulations where it was the most unstable
in the linear map. Also, a nonlinear simulation trajec-
tory that passed through the stable corridor showed no
instabilities through to high compression. Note that this
trajectory (run B) passes just at the upper edge of the
n = 1 unstable region, with a very low but finite linear
growth rate for part of the trajectory. It should be noted
that the nonlinear simulations have dissipation, including
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viscosity, which can modify the resonant layer response
from the linear model employed, and change the profiles
slightly from the equilibria calculated for the linear anal-
yses, in particular near the edge. In strongly unstable
regions, however, small variations such as these are not
typically able to stabilize the mode, and the mode man-
ifests in nonlinear simulation. Evidently the linear mode
along the run B trajectory is not strong enough to mani-
fest in the nonlinear simulation. In this sense, the linear
results should be taken only as a guide for what to expect
in nonlinear simulation and experiment, as more detailed
physics models can change the stability, most readily in
regions of near marginal stability.

An important physical effect not included in this anal-
ysis is that of diffusion of magnetic flux into the liquid
metal wall. Due to resistivity of the liquid metal, the ini-
tially closed flux surfaces penetrate into the wall and be-
come open flux. This loss of flux surfaces has the effect of
shaving off the high edge q. There are also consequences
for plasma-wall interaction. Current that was flowing on
the surfaces as they are opened will decay rapidly; this
may have the effect of inducing edge current on the re-
maining plasma. Plasma on the opened flux surfaces will
be lost to the wall, resulting in an enhanced sputtering
of wall material. The severity of this will depend on the
initial current and density profiles which can perhaps be
tailored to be little different from vacuum on the sur-
faces that will be lost. These effects are currently being
investigated and will appear in a future publication.

A few other important physical effects not included in
these results are resonant interaction with non-thermal or
energetic particles, plasma rotation and two fluid effects.
In all three cases, the equilibrium state and stability may
be affected. Below we highlight a few key physics issues
with each effect.

Once the plasma is compressed to tens of keV, a non-
uniform source of alpha particle heating from fusion al-
phas is expected, an effect not taken into account in this
work. This would be most pronounced at high compres-
sion, and after long enough for the ion distribution to
collisionally form a slowing down distribution. While the
equilibrium and stability may be affected here, the low
compression and entry to the high compression regions
will not. In that sense, this work is more focused on
how to remain stable during compression than during
the dwell time at maximum compression. We note that
in the stable corridor, the energetic ion interaction should
be stabilizing for the monotonic q profile [35], though this
remains to be investigated.

For rotation, angular momentum conservation dictates
that any initial rotation will increase with compression.
While the differential rotation between surfaces is ex-
pected to have a stabilizing influence [36, 37], it is possi-
ble to drive rotational instabilities at high compression.
Rotational effects are therefore currently being investi-
gated. At high compression, the rotation can become

large enough that it must be taken into account in the
equilibrium, where initial calculations indicate that the
Mach numbers can reach M ' 0.1, but remain subsonic.

Last, the electron and ion temperatures can in general
differ, and do in the VAC simulations, though a single
fluid approach was used in the linear analyses presented
here. We expect that two-fluid effects in the resonant
layers will also change the linear stability to some degree,
and may be necessary to better complement nonlinear
simulations with VAC. Thus, these effects are also being
investigated.

However, if the primary MHD instabilities described
here are avoided, such experiments will likely be able to
reach high compression ratios while remaining stable. It
is only once high compression is reached that issues such
as heat load and plasma wall interactions can be studied
in detail experimentally.
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