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Plasma Target Development: Small Injectors MHD Simulation

GF MTF Concept

Plasma Target Development: Large Injector Plasma Compression Tests (PCS program)

General Fusion is pursuing a concept for an MTF-based powerplant General Fusion’s newest large injector, Pi3, is designed to demonstrate General Eusion has developed a complimentarv set of MHD simulation is primarily done using a modified version of Gene_ral Fu_sion IS cc_)n_duc_ting a sequence of subsc_ale experiments of compact toroid (CT) plasmas compregsed by chemical_ly driven implosion of an
where a thick, flowing liquid metal liner serves as a flux conserver, first | | formation of a spherical tokamak target suitable for use in our large ) P _ P . y * d he abili del th ing b d aluminum liner, providing insight into plasma behavior needed to advance toward a reactor-scale demonstration. These experiments are referred to as
I le CH] f h I-tok K VAC*, due to the ability to model the moving boundary ) . ; : . . . N : _

wall, and neutron blanket. scale magnetized target fusion prototype. The technology may also Small-SCale experiments rorming spherical-tokama _ . _ Plasma Compression Small” (PCS) and in total 16 experimental campaigns have been completed each with a final “field shot” where the CT is actually

. . L o L : id-f : : compression taraets required for MTF compression, and the advection effects compressed by the aluminum liner at a remote location. In all PCS shots to date CT plasmas are formed by a coaxial Marshall gun, with magnetic fields
A quasi-spherical cavity is formed in liquid metal through a have applications in solenoid-free startup in steady-state spherical P gets. _ B _ _ , ) ) . : : o : . : e

o ) , Simplified machines with involved in the CHI formation process. supported by internal plasma currents and eddy currents in the wall. We are currently investigating the behavior of plasma configurations similar to

combination of fluid rotation and flow management features. A tokamak systems. 1m Spector, a well-diagnosed laboratory P _ _ spherical tokamaks. T
spherical tokamak “target” is injected into the cavity by a magnetized . N o PI3 > machine has explored a wide range of :jeudp‘fif;fedlfggﬁztt'sczefme * Originally developed by Gabor Téth et al. at Michigan University.
Marshall gun. T : : : - . .
An arra c?f iston “drivers” push on the back of the liner resulting in a ) fslli(ecmr parameters, measuring detailed profile  gestructive MTF tests Compression Simulations

yorp P J i —_— | /’ conserver data to inform S|ulat| nd stb|ty — ]

smooth, nominally self-similar compression on a millisecond timescale.
Preservation of angular momentum of the fluid during compression
helps stabilize the wall against Rayleigh Taylor instabilities.

Current design efforts are focused on an integrated prototype that will
demonstrate all aspects of the concept, resulting in adiabatic
compressive heating driven by liquid metal.
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Integrated Prototype Specifications
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Averaged Poloidal Fields [T]
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