

View

Online


Export
Citation

CrossMark

RESEARCH ARTICLE |  MARCH 20 2024

An interface tracking, finite volume code for modeling
axisymmetric implosion of a rotating liquid metal liner with
free surface
Ivan V. Khalzov  ; Daymon Krotez  ; Raphaël Ségas  

Physics of Fluids 36, 032125 (2024)
https://doi.org/10.1063/5.0196467

 22 M
arch 2024 06:13:38

https://pubs.aip.org/aip/pof/article/36/3/032125/3278030/An-interface-tracking-finite-volume-code-for
https://pubs.aip.org/aip/pof/article/36/3/032125/3278030/An-interface-tracking-finite-volume-code-for?pdfCoverIconEvent=cite
https://pubs.aip.org/aip/pof/article/36/3/032125/3278030/An-interface-tracking-finite-volume-code-for?pdfCoverIconEvent=crossmark
javascript:;
https://orcid.org/0000-0003-1355-0303
javascript:;
https://orcid.org/0009-0000-8302-6879
javascript:;
https://orcid.org/0009-0000-8938-8301
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0196467&domain=pdf&date_stamp=2024-03-20
https://doi.org/10.1063/5.0196467
https://servedbyadbutler.com/redirect.spark?MID=176720&plid=2291284&setID=592934&channelID=0&CID=842343&banID=521636251&PID=0&textadID=0&tc=1&scheduleID=2211497&adSize=1640x440&data_keys=%7B%22%22%3A%22%22%7D&matches=%5B%22inurl%3A%5C%2Fpof%22%5D&mt=1711088018216461&spr=1&referrer=http%3A%2F%2Fpubs.aip.org%2Faip%2Fpof%2Farticle-pdf%2Fdoi%2F10.1063%2F5.0196467%2F19837024%2F032125_1_5.0196467.pdf&hc=f06765c96a37ec279ac23b749268417332059727&location=


An interface tracking, finite volume code
for modeling axisymmetric implosion
of a rotating liquid metal liner with free surface

Cite as: Phys. Fluids 36, 032125 (2024); doi: 10.1063/5.0196467
Submitted: 7 January 2024 . Accepted: 27 February 2024 .
Published Online: 20 March 2024

Ivan V. Khalzov, Daymon Krotez, and Rapha€el S�egasa)

AFFILIATIONS

General Fusion Inc., 6020 Russ Baker Way, Richmond, British Columbia V7B 1B4, Canada

a)Author to whom correspondence should be addressed: raphael.segas@generalfusion.com

ABSTRACT

We present Integrated System Model-hydrodynamics (ISM-hydro)—an interface tracking, finite volume code for modeling a shaped implo-
sion of a rotating, initially cylindrical, fluid shell (liner) with a free surface. The code is a novel implementation of the mixed Lagrangian–
Eulerian approach, applied to a compressible fluid in an axisymmetric geometry described by cylindrical coordinates (r, /, z). In ISM-hydro,
a structured quadrilateral mesh follows fluid elements in the r-direction (radially Lagrangian) and is fixed in the z-direction (axially
Eulerian). This approach accurately captures the motion of the liner’s free surface, making it an interface tracking method. Using this mesh,
we derive a finite volume discretization of the axisymmetric Euler equations for a rotating compressible fluid that has an exact balance of
kinetic energy. An extensive comparison between ISM-hydro and the open-source software OpenFOAM is presented; results for different test
cases show very good agreement in simulated implosion trajectories and flow fields. ISM-hydro is the purely hydrodynamic component of
the Integrated System Model (ISM), a framework developed at General Fusion (GF) for comprehensive predictive modeling of GF’s magne-
tized target fusion (MTF) scheme, where an imploding rotating liquid metal liner compresses a magnetized plasma target to fusion condi-
tions. Among advantages of the code is its speed: a full implosion simulation with a coarse mesh takes on the order of one minute on a single
core while preserving high accuracy. This makes ISM-hydro a valuable tool for the design optimization of GF’s MTF machines.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0196467

I. INTRODUCTION

The goal of this paper is to present the Integrated System Model-
hydrodynamics (ISM-hydro) code developed at General Fusion (GF)
as part of the Integrated SystemModel (ISM) framework. The ultimate
objective of the ISM is to provide predictive and complete simulations
of the magnetized target fusion (MTF) systems being designed at GF.1

GF’s MTF concept is illustrated in Fig. 1. A magnetized plasma (target)
is injected into an initially cylindrical cavity formed inside a liquid
metal shell (liner) contained in a rotating vessel (rotor). A pneumatic
driving system generates carefully tuned pressures that push on the lin-
er’s outer surface nonuniformly, causing the liner to implode and
change in shape (shaped implosion), thereby compressing the target to
fusion conditions.

The development of ISM-hydro is motivated by the need for fast
(on the order of one minute on a single core) and accurate simulations
of the liner’s motion, especially the dynamics of its inner surface dur-
ing implosion (implosion trajectory), which can then be used in GF’s

MTF system design optimization process. A number of simplifying
assumptions are made in ISM-hydro. First, it is assumed that the lin-
er’s motion is governed by pure hydrodynamics; in particular, the
effects of magnetic fields and the plasma are neglected. This eliminates
the complexity of fully coupled modeling of different parts of the MTF
system with different time scales and physics, although GF has made
good progress in this area.2 Second, the liner is assumed to be axisym-
metric and laminar throughout the implosion. This is justified by the
results of the recent paper,3 showing that axisymmetric laminar
simulations of liquid liner implosions are in excellent agreement with
experimental data, provided that the liner’s inner surface remains
Rayleigh–Taylor stable. Third, the deformation (deviation from cylin-
dricity) of the liner’s inner surface is assumed to be moderate and
without topological changes. This greatly simplifies the simulation of
the liner’s inner surface motion during implosion.

To accurately simulate the dynamics of the liner with free surface,
ISM-hydro uses a mixed Lagrangian–Eulerian fluid description similar
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to the so-called multilayer shallow water models, which are applica-
ble to a wide range of problems from geophysical flow4,5 to the
movement of micro-organisms.6,7 The description is based on divid-
ing the fluid into multiple layers in the direction transverse to the
free surface, and then following dynamics of their boundaries in a
Lagrangian way, while treating the flows within each layer in an
Eulerian way. This approach naturally tracks the motion of the flu-
id’s free surface, making it an interface tracking method.8,9 Typical
multilayer shallow water models consider an incompressible fluid
(water) in a vertical gravity field with a free surface close to horizon-
tal, so the Lagrangian direction is vertical. The pressure distribution
within such a fluid is approximately hydrostatic, assuming separa-
tion of horizontal and vertical length scales (shallow water assump-
tion). ISM-hydro, on the contrary, describes a rotating compressible
fluid in axisymmetric geometry with a free surface close to cylindri-
cal, so the Lagrangian direction in this case is radial. The fluid pres-
sure distribution is given by the corresponding equation of state, and
no assumptions about length scales of the problem are made (no
shallow water assumption). Implementation of these elements in
combination with the mixed Lagrangian–Eulerian approach repre-
sents a novelty of the ISM-hydro scheme. Note that for such a
scheme to be functional, the assumption of moderate deformations
without topological changes should also hold for all fluid layers. The
advantages of the mixed Lagrangian–Eulerian approach are the
absence of fluid advection between layers and the possibility of using
a structured quadrilateral mesh. In the ISM-hydro scheme, this leads
to a simplified finite volume discretization of the axisymmetric Euler
equations for a compressible rotating fluid which has an exact bal-
ance of kinetic energy, a property usually not satisfied in other finite
volume algorithms.

ISM-hydro is intended to predict liner implosions accurately and
efficiently while enabling coupling with other relevant components,
such as plasma and pneumatic drive models, as part of the ISM frame-
work. This framework is meant to support the development and
design of GF’s MTF systems and, ultimately, viable fusion power gen-
eration by facilitating comprehensive design optimization processes
and analysis of experimental results.

The rest of the paper is organized as follows. Section II describes
the numerical method used in ISM-hydro. Section III presents a con-
vergence study and a comparison of high-resolution simulation results
between ISM-hydro and the open-source software OpenFOAM.
Section IV summarizes the advantages and limitations of our method.

II. ISM-HYDRO NUMERICAL METHOD
A. Problem statement

In order to present the details of our numerical method, we con-
sider a simplified axisymmetric model of the MTF system being pur-
sued by GF. Gravity, surface tension, and shear viscosity are neglected,
although we acknowledge they can play a role in the liner dynamics.
Figure 2 displays the geometry of the model in the r–z plane in cylin-
drical coordinates ðr;/; zÞ. By convention, the axis of revolution is
located at r¼ 0 and the equatorial plane at z¼ 0. The rotor is a cylin-
der with outer radius Rb and height H. The rotor’s top and bottom
plates, located at z ¼ H=2 and z ¼ �H=2, are referred to as the end
plates. The rotor contains Nc distinct horizontal channels (annular
slots), which are uniformly distributed along the axial direction and
extend radially from Ra to Rb. The channels are separated by horizontal
annular baffles of non-zero uniform thickness [horizontal gray bands
in Figs. 2(a) and 2(b)]; these baffles are a simplified representation of
the rotor structure illustrated in Fig. 1.

As shown in Fig. 2(a), at time t¼ 0, the liquid liner (red region)
undergoes solid body rotation at angular velocity xjt¼0 ¼ X0. Due to
centrifugal forces, the spinning liquid completely fills the rotor chan-
nels and forms a cylindrical cavity of radius R0 occupied with an ideal
gas of low pressure p0.

Implosion of the liner is initiated by applying time-varying driving
gas pressures PiðtÞ to each channel inlet at r¼Rb (corresponding to the
initial outer radius of the liner), where i ¼ 1; …; Nc is the numbering
of the channels from bottom to top as shown in Fig. 2(b). Functions
PiðtÞ represent the pressures generated by the pneumatic driving system.
For the test cases considered in Sec. III, these functions are given in a
simple analytical form. Note that the driving pressures can vary from
channel to channel; this is how shaped implosion is achieved. As time
progresses and the liner moves radially inward, the driving pressures

FIG. 1. GF’s MTF concept: a magnetized
plasma target is compressed to fusion
conditions by a shaped implosion of a liq-
uid metal liner.
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continue to be applied at the liner’s outer surface; this assumes that the
driving gas pressure equilibrates instantly inside each channel.

B. Finite volume discretization

Here, we describe the finite volume method implemented in
ISM-hydro for simulating a compressible axisymmetric liquid metal
liner. The advantage of finite volume discretization over other methods
is that it naturally preserves the conservative form of the original Euler
equations. These equations in cylindrical coordinates are the continu-
ity equation and the three components of the axisymmetric inviscid
momentum equation, namely,

_q ¼ �r � ðqvÞ; (1a)

ðqvrÞ_¼ �r � ðqvrvÞ þ qx2r � p0r; (1b)

ðqvzÞ_¼ �r � ðqvzvÞ � p0z ; (1c)

ðqxr2Þ_¼ �r � ðqxr2vÞ; (1d)

where q is the density, v is the velocity vector containing only radial vr
and axial vz components, x is the angular velocity, and p is the pressure.
Here and below, a dot above a quantity corresponds to a partial deriva-
tive of this quantity with respect to time, and a prime denotes a partial
derivative with respect to the coordinate indicated in the subscript.

For finite volume discretization of system (1), we introduce a
structured quadrilateral mesh in the r-z plane as depicted in Fig. 2.
Namely, at time t¼ 0, the cylindrical liquid liner is divided in the radial
direction into Nr vertical layers of equal thickness Dr0, separated by
vertical mesh lines

rjjt¼0 ¼ R0 þ jDr0; Dr0 ¼ Rb � R0

Nr
; j ¼ 0; …; Nr : (2)

During the implosion, the vertical mesh lines are advected with the
fluid flow and can deform (Lagrangian description). They do not
remain vertical in general,

rj ¼ rjðt; zÞ; j ¼ 0; …; Nr; (3)

where functions r0ðt; zÞ and rNr ðt; zÞ describe the shape of the liner’s
inner and outer free surfaces for all times t, respectively. Due to their
Lagrangian definition, the vertical mesh lines rj in Eq. (3) are treated as
impenetrable boundaries (i.e., no flow is allowed across them and the
mass of each vertical layer is conserved). In Sec. III C, we also intro-
duce radially non-uniform initial meshes by further subdividing the
innermost vertical layer in Eq. (2). In the axial direction, the liquid
liner is divided into Nz equal horizontal layers of thickness Dz with
fixed boundaries (horizontal mesh lines) given by

zk ¼ �H
2
þ kDz; Dz ¼ H

Nz
; k ¼ 0; …; Nz: (4)

The presence of baffles in the geometry restricts the choice for the
number of horizontal mesh layers Nz; specifically, it can only be a mul-
tiple of the number of rotor channels Nc,

Nz ¼ KcNc;

where the integer Kc is the number of horizontal mesh layers per chan-
nel. In this case, the horizontal mesh lines from Eq. (4) with indices
k ¼ 0; Kc; 2Kc; …; NcKc correspond to the midplanes of the baffles.
In the following discussion, we reserve notation i for numbering of the
rotor channels, and j and k for radial and axial indices of the mesh
nodes, respectively.

We apply a staggered-grid arrangement of quantities, a standard
practice for finite volume methods. Velocity components vr and vz are
defined at the faces of the mesh cells [indices ð j; kþ 1=2Þ and
ð jþ 1=2; kÞ, respectively], while density q and pressure p are defined
at the cell centers [indices ð jþ 1=2; kþ 1=2Þ], as shown in Fig. 2(c).
We also define the discretized angular velocity x at the same faces as
the radial velocity vr [indices ð j; kþ 1=2Þ]. The control volumes for
each of these discretized quantities are defined in the j–k index plane
as unit squares centered around the indices corresponding to the

FIG. 2. Geometry and numerical mesh of the ISM-hydro model for a case where the number of horizontal mesh layers is equal to the number of rotor channels, Nz¼Nc. (a) At
time t¼ 0, the liquid liner (red), spinning together with the rotor (of height H and radius Rb), fills the rotor channels (separated by gray horizontal baffles extending radially from
Ra to Rb) and forms a cylindrical cavity of radius R0. (b) At later time t> 0, due to applied driving pressures PiðtÞ, the liner implodes radially and changes in shape; the numeri-
cal mesh follows the liner’s motion. (c) A zoomed mesh cell showing the staggering of physical quantities in our finite volume scheme.
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quantity. For the density q and pressure p, the control volume coin-
cides with the mesh cell. For the radial velocity vr and angular velocity
x, the control volume is bounded by the mesh lines rj�1=2; rjþ1=2, zk,
and zkþ1. Similarly, the control volume for the axial velocity vz is
bounded by the mesh lines rj, rjþ1; zk�1=2, and zkþ1=2. Mesh lines with
half-integer indices are defined as

r2jþ1
2
¼ 1

2
r2j þ r2jþ1

� �
; zkþ1

2
¼ 1

2
zk þ zkþ1ð Þ:

Note that the control volumes are moving and changing in size and
shape due to motion of the vertical mesh lines in the physical r–z
plane. For now, we consider the most general form of the discrete
equations with no baffles. The effects of the baffles (reduction of cell
volumes and zeroing of the axial velocity) are discussed at the end of
this section.

Discretizing system (1) on the relevant control volumes, we
obtain (details of this derivation are presented in Appendix A)

_mjþ1
2kþ1

2
¼ qmjþ1

2k
� qmjþ1

2kþ1; (5a)

_Mrjkþ1
2
¼ qMr

jk � qMr
jkþ1 þmjkþ1

2
x2

jkþ1
2
rjkþ1

2
þ f prjkþ1

2
; (5b)

_Mzjþ1
2k
¼ qMz

jþ1
2k�1

2
� qMz

jþ1
2kþ1

2
þ f pzjþ1

2k
; (5c)

_Ljkþ1
2
¼ qLjk � qLjkþ1: (5d)

Quantities on the left-hand side (LHS) of system (5) are the corre-
sponding control volume integrals of the LHS quantities of system (1),
namely, the cell massð

Vjþ1
2kþ1

2

qdV ) mjþ1
2kþ1

2
¼ qjþ1

2kþ1
2
Vjþ1

2kþ1
2
; (6)

the radial momentumð
Vjkþ1

2

qvrdV ) Mrjkþ1
2
¼ mjkþ1

2
vrjkþ1

2
; (7)

the axial momentumð
Vjþ1

2k

qvzdV ) Mzjþ1
2k
¼ mjþ1

2k
vzjþ1

2k
; (8)

and the angular momentumð
Vjkþ1

2

qxr2dV ) Ljkþ1
2
¼ mjkþ1

2
xjkþ1

2
r2jkþ1

2
: (9)

Here and below, the arrow denotes the discretization operation: the
quantity at the tip of the arrow is the discrete approximation of the
quantity at the base of the arrow.

We can already make several conclusions about the order of accu-
racy of our numerical scheme. If we introduce the coordinate x ¼ r2,
then for any sufficiently smooth function f(x, z), the integral over a
control volume centered around some point (xc, zc) and bounded by
mesh lines xlðzÞ; xrðzÞ; zc � Dz=2; zc þ Dz=2 can be approximated
using its Taylor expansion

ð
Vc

fdV ¼ p
ðzcþDz

2

zc�Dz
2

ðxrðzÞ
xlðzÞ

f ðx; zÞdxdz

¼ pDxDz fc þ 1
2
f 0xcðDxr � DxlÞ þ OðDx2;Dz2Þ

� �
; (10)

where Dxr ¼ xrðzcÞ � xc; Dxl ¼ xc � xlðzcÞ; Dx ¼ xrðzcÞ � xlðzcÞ,
and subscript c means that function f and its derivative f 0x are taken at
point (xc, zc). From Eq. (10), it follows that approximations (6)–(9) are
second order accurate in Dz; this is due to the mesh uniformity in the
axial direction. In general, the second order accuracy in Dz holds in
the bulk of fluid domain for all terms introduced in the scheme later,
but it reduces to the first order near the end plates for the radial veloc-
ity shear term (26). Equation (10) also shows that for general non-
uniform meshes in x ¼ r2 (i.e., when Dxr 6¼ Dxl , which is always the
case for control volumes at the fluid surface), the scheme has only the
first order accuracy in Dx (or, equivalently, in Dr0). Therefore, we
expect the ISM-hydro numerical scheme to be first order accurate in
both Dr0 and Dz. We note that such accuracy is satisfactory for our
primary purpose of simulating the liner’s inner surface dynamics
(implosion trajectory), although it can lead to smearing of possible
shocks inside the liner.

Choosing f¼ 1 in Eq. (10), we obtain an approximation for the
cell volume entering Eq. (6),ð

Vjþ1
2kþ

1
2

dV ) Vjþ1
2kþ1

2
¼ pDz r2jþ1kþ1

2
� r2jkþ1

2

� �
; (11)

which is accurate to the second order in Dz. The control volume
masses entering Eqs. (7)–(9) are defined as averages between two cor-
responding cell masses

mjkþ1
2
¼ 1

2
mj�1

2kþ1
2
þmjþ1

2kþ1
2

� �
; (12a)

mjþ1
2k
¼ 1

2
mjþ1

2k�1
2
þmjþ1

2kþ1
2

� �
: (12b)

At the fluid domain boundary, these masses are simply halves of the
masses of the corresponding boundary cells. For example, at the liner’s
inner (j¼ 0) and outer (j¼Nr) surfaces, we have

m0k�1
2
¼ 1

2
m1

2k�1
2
; mNrk�1

2
¼ 1

2
mNr�1

2k�1
2
; k ¼ 1; …; Nz: (13)

The fluid radial velocity in Eq. (7) is determined by the full time deriv-
ative of the radial position of the vertical mesh line rj, as follows from
its Lagrangian nature

vrj � drjðt; zðtÞÞ
dt

¼ _r j þ ðrjÞ0zvzj; (14)

where the last term is due to the shear of the vertical mesh line rj. In
general, we can rewrite Eq. (14) for all indices as

vrjkþ1
2
¼ _r jkþ1

2
þ dvrjkþ1

2
; (15)

where the discrete form of the shear term dvrjkþ1=2 is specified later in
this section [see Eq. (26)]. The primary variables in our numerical
scheme are mjþ1=2kþ1=2; rjkþ1=2; _r jkþ1=2; vzjþ1=2k, and xjkþ1=2. All
other quantities are expressed using them.
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The terms on the right-hand side (RHS) of system (5) represent
the fluxes through the top and bottom faces of the control volumes,
denoted as q with the corresponding quantity as a superscript, and the
forces integrated over the control volumes: the centrifugal force,mx2r,
acting in the radial direction, and the components of the pressure
force, f pr and f pz , acting in the radial and axial directions, respectively.
Note that there are no fluxes through the left and right faces of the
control volumes because of the radially Lagrangian property. The defi-
nition of the pressure force components is

f prjkþ1
2
¼ � pjþ1

2kþ1
2
� pj�1

2kþ1
2ð ÞSjkþ1

2
; (16a)

f pzjþ1
2k
¼ � pjþ1

2kþ1
2
� pjþ1

2k�1
2ð ÞSjþ1

2k
þ df pzjþ1

2k
; (16b)

with the vertical and horizontal area elements given by

Sjkþ1
2
¼ 2prjkþ1

2
Dz; (17a)

Sjþ1
2k
¼ p r2jþ1k � r2jk

� �
; (17b)

and the radial position of each mesh node defined consistently with
the rest of the scheme as

r2jk ¼
1
2

r2jk�1
2
þ r2jkþ1

2

� �
: (18)

The additional term in Eq. (16b) is due to the shear of the vertical
mesh line rjþ1=2 [its discrete form is given in Eq. (31)]. Indeed, a full z-
derivative of pressure along the mesh line rjþ1=2 (a derivative at fixed
radial index jþ 1=2) is

dp
dz

� �
jþ1

2

� dpðrjþ1
2
ðt; zÞ; zÞ
dz

¼ p0zjþ1
2
þ rjþ1

2ð Þ0zp0rjþ1
2
; (19)

where p0zjþ1=2 is the partial z-derivative of pressure (a derivative at fixed
radius r) evaluated at a point with coordinates ðrjþ1=2ðt; zÞ; zÞ. This is
the partial z-derivative that enters Eq. (1c) and determines the axial
pressure force through the control volume integral. So, using Eq. (19),
the axial pressure force in Eq. (5c) can be decomposed as

f pzjþ1
2k
( �

ð
Vjþ1

2k

p0zdV ¼ �
ð

Vjþ1
2k

dp
dz

� �
jþ1

2

dV þ
ð

Vjþ1
2k

rjþ1
2ð Þ0zp0rjþ1

2
dV ;

where the resulting two integrals correspond to the two terms in Eq. (16b).
To fully specify pressure forces in system (5), we need an expres-

sion for the fluid pressure in every mesh cell as a function of primary
quantities. In ISM-hydro, we use the Cole (also known as modified
Tait) equation of state (EOS),10 relating the pressure to the local fluid
density

pEOSjþ1
2kþ1

2
¼

q0c
2
s

C

qjþ1
2kþ1

2

q0

� �C

� 1

 !
if qjþ1

2kþ1
2
> q0;

0 otherwise;

8>><
>>: (20)

where q0 is the reference density, cs is the sound speed, and C is the
stiffness exponent (adiabatic index). No specific cavitation model is
considered in the equation of state (20); any cells where the fluid den-
sity drops below the reference density behave as a fluid with zero
pressure.

For stability of our numerical scheme, we introduce an artificial
viscosity—a typical approach in staggered-grid Lagrangian methods,
originally designed for problems containing shocks (see, for example,
Refs. 11–13 and references therein). We choose a linear form of artifi-
cial viscosity (linear in fluid velocity gradient), which is analogous to
bulk viscosity. Mathematically, it is expressed as an additional term in
the cell fluid pressure

pjþ1
2kþ1

2
¼ pEOSjþ1

2kþ1
2
� �qjþ1

2kþ1
2
ðr � vÞjþ1

2kþ1
2
; (21)

where � is the artificial kinematic bulk viscosity, which is considered
constant in the fluid domain, and the discrete divergence of the fluid
velocity is given as (see Appendix A for details)

ðr�vÞjþ1
2kþ1

2
¼
_r jþ1kþ1

2
Sjþ1kþ1

2
� _r jkþ1

2
Sjkþ1

2
þvzjþ1

2kþ1Sjþ1
2kþ1�vzjþ1

2k
Sjþ1

2k

Vjþ1
2kþ1

2

:

(22)

This extra pressure component adds diffusion-like terms to the purely
advective momentum equations (5b) and (5c), turning them into
advection–diffusion equations. The optimal value of � for numerical
stability is determined by the sound speed in the fluid and the initial
radial cell size

� ¼ CLcsDr0;

where CL is a case specific non-dimensional coefficient, usually close to
0.5. Note that adding this artificial viscosity, linear inDr0, does not change
the overall first order accuracy of the scheme and ensures convergence of
the discrete equations to inviscid system (1) in the limitDr0 ! 0.We ver-
ified that the values of artificial viscosity provide numerical stability while
having a negligible effect on implosion trajectories.

Since accurate simulation of possible shocks in the liner is not
our primary focus, and an artificial viscosity is already explicitly intro-
duced for stability of our scheme, we do not require any special
(Godunov-type) representations of the face fluxes. Therefore, the mass
flux in Eq. (5a) can be discretized directly as

ðrjþ1k

rjk

ðqvzÞjz¼zk
2prdr ) qmjþ1

2k
¼ qjþ1

2k
vzjþ1

2k
Sjþ1

2k
¼ mjþ1

2k
vzjþ1

2k

Dz
: (23)

There is some freedom in discretizing the remaining face fluxes q in
system (5) and shear terms in Eqs. (15) and (16b). We use this freedom
to make our scheme satisfy additional properties inherent to continu-
ous system (1). Specifically, we want to have the discrete analogues of
the axial pressure force balanceð

V

p0zdV ¼
ð
@V

p dSz (24)

(i.e., the axial pressure force is canceled inside the fluid volume) and
the fluid kinetic energy balance

d
dt

ð
V

1
2
qv2dV ¼

ð
V

pðr � vÞdV �
ð
@V

pv � dS (25)

(i.e., the change of total kinetic energy is only due to the work done by
pressure), where V is the entire fluid domain, @V is its boundary
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surface, and dS � n dS ¼ ðdSr ; dSzÞ is the element of the surface area
with unit normal vector pointing outward. The details of this deriva-
tion are outlined in Appendix B. As a result, we obtain the following
expression for the radial velocity shear term:

dvrjkþ1
2
¼

vtzjkþ1
2
r2jkþ1 � r2jkþ1

2

� �
þ vbzjkþ1

2
r2jkþ1

2
� r2jk

� �
2Dzrjkþ1

2

: (26)

Here, we introduce the mass averaged axial velocities at the top and
bottom of the control volume ð j; kþ 1=2Þ;

vtzjkþ1
2
¼ wl

jkþ1
2
vzj�1

2kþ1 þ wr
jkþ1

2
vzjþ1

2kþ1; (27a)

vbzjkþ1
2
¼ wl

jkþ1
2
vzj�1

2k
þ wr

jkþ1
2
vzjþ1

2k
; (27b)

where the left and right weights, summing to unity, are defined as

wl
jkþ1

2
¼ mj�1

2kþ1
2

mj�1
2kþ1

2
þmjþ1

2kþ1
2

; (28a)

wr
jkþ1

2
¼ mjþ1

2kþ1
2

mj�1
2kþ1

2
þmjþ1

2kþ1
2

: (28b)

Similar to Eq. (13), at the liner’s inner and outer surfaces, these weights
are reduced to

wl
0k�1

2
¼ wr

Nrk�1
2
¼ 0; wr

0k�1
2
¼ wl

Nrk�1
2
¼ 1; k ¼ 1; …; Nz:

The remaining fluxes become

qMr
jk ¼

qmjk
2

vrjk�1
2
þ vrjkþ1

2

� �
; (29a)

qMz

jþ1
2kþ1

2
¼

qmjþ1
2kþ1

2

2
vzjþ1

2k
þ vzjþ1

2kþ1
� �

; (29b)

qLjk ¼
mjk�1

2
vtzjk�1

2
r2jkþ1

2
þmjkþ1

2
vbzjkþ1

2
r2jk�1

2

� �
xjk�1

2
þ xjkþ1

2

� �
4Dz

; (29c)

where the corresponding mass fluxes are given by expressions consis-
tent with the control volume masses definition (12),

qmjk ¼
1
2

qmj�1
2k
þ qmjþ1

2k

� �
; (30a)

qmjþ1
2kþ1

2
¼ 1

2
qmjþ1

2k
þ qmjþ1

2kþ1

� �
: (30b)

The axial pressure force shear term is

df pzjþ1
2k
¼ wr

jk�1
2
Dpjk�1

2
p r2jk � r2jk�1

2

� �
þ wr

jkþ1
2
Dpjkþ1

2
p r2jkþ1

2
� r2jk

� �
þ wl

jþ1k�1
2
Dpjþ1k�1

2
p r2jþ1k � r2jþ1k�1

2

� �
þ wl

jþ1kþ1
2
Dpjþ1kþ1

2
p r2jþ1kþ1

2
� r2jþ1k

� �
; (31)

where the radial pressure difference is introduced as

Dpjkþ1
2
¼ pjþ1

2kþ1
2
� pj�1

2kþ1
2
:

Let us make several comments about energy balance in the ISM-
hydro scheme. The discrete form of the liner kinetic energy balance
follows from Eq. (B5) [cf. Eq. (25)]:

_Ekin ¼
X
j;k

pjþ1
2 kþ1

2
ðr � vÞjþ1

2kþ1
2
Vjþ1

2 kþ1
2
þW; (32)

where W denotes the overall power of the external pressure forces
from gases in the channel inlets and inside the cavity [see Eq. (34)].
This equation can be used as an extra diagnostic of the correctness of
the solution: for all times t, the discrete kinetic energy of the liner (B4)
must be equal to the time integral of Eq. (32) within the time integra-
tion error. In addition, we can introduce a discrete equation for the
dynamics of the fluid internal energy in every mesh cell (assuming no
thermal diffusion for simplicity)

_U jþ1
2kþ1

2
¼ qUjþ1

2k
� qUjþ1

2kþ1 � pjþ1
2 kþ1

2
ðr � vÞjþ1

2kþ1
2
Vjþ1

2 kþ1
2
; (33)

where qUjþ1
2k
and qUjþ1

2kþ1 are the advective fluxes of internal energy
through the bottom and top boundaries of the cell, respectively. Of
course, to properly include internal energy in the numerical scheme,
we would also need to define it in terms of thermodynamic variables
(density and temperature) according to the chosen equation of state
(20). This is not part of our analysis; here, we simply want to dem-
onstrate that the ISM-hydro scheme is compatible with a discrete
form of energy conservation. Summing up Eqs. (32) and (33) over
all fluid cells, we obtain the energy conservation law in its discrete
form

d
dt

Ekin þ
X
j;k

Ujþ1
2 kþ1

2

� �
¼ W;

i.e., the change in the total fluid energy is equal to the work done by
external pressure forces. The presence of the discrete energy conserva-
tion law puts more constraints on the numerical scheme and, thus,
helps to avoid spurious solutions.

System (5) should be supplemented with boundary conditions.
Due to the staggering of the velocity components, we only require
impenetrable boundary conditions at the end plates for the axial
velocity

vzj�1
20
¼ vzj�1

2Nz
¼ 0; j ¼ 1; …; Nr:

This means we do not need to solve the axial momentum equation
(5c) for corresponding control volumes and all fluxes through the end
plates are zero. For determining pressure forces in Eqs. (5b) and (5c),
in addition to pressures inside the fluid cells given by Eq. (21), we
define pressures just outside the liner’s inner and outer surfaces as cor-
responding gas pressures, namely,

p�1
2k�1

2
¼ p0

Vinð0Þ
VinðtÞ

� �c

; VinðtÞ ¼
XNz

k¼1

Dzpr20k�1
2
ðtÞ; (34a)

pNrþ1
2k�1

2
¼ PiðkÞðtÞ; iðkÞ ¼ k

Kc

� 	
; k ¼ 1; …; Nz; (34b)

where the first equation is the pressure of the ideal gas adiabatically
compressed inside the cavity with changing volume VinðtÞ, and
PiðkÞðtÞ is the driving gas pressure pushing on the outer surface of the
kth horizontal fluid layer in the ith channel, with the formal relation
between indices i and k given by the ceiling function.

Additional conditions are imposed on discrete quantities inside
the rotor channels (regions between baffles). First, all the vertical cell
sizes Dz are shrunk by a factor 1� b, where b is the obstruction
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fraction due to the thickness of the baffles. That is, the vertical area
becomes

Sjkþ1
2
¼ 2prjkþ1

2
Dzð1� bÞ if Ra � rjkþ1

2
; (35)

and the volume of a cell, located fully or partially inside a channel,
becomes

Vjþ1
2kþ1

2
¼

pDzð1� bÞ r2jþ1kþ1
2
� r2jkþ1

2

� �
if Ra � rjkþ1

2
< rjþ1kþ1

2
;

pDz ð1� bÞ r2jþ1kþ1
2
� R2

a

� �
þ R2

a � r2jkþ1
2

� �
if rjkþ1

2
< Ra < rjþ1kþ1

2
:

8>>>>>>><
>>>>>>>:

(36)

Second, the axial velocity and all corresponding fluxes are set to zero
for a control volume ð jþ 1=2; kÞ if half or more of its horizontal area
overlaps with the ith baffle

vzjþ1
2k
¼ 0 if R2

a �
1
2

r2jk þ r2jþ1k

� �
and k ¼ iKc:

If we consider one horizontal mesh layer per channel (Nz¼Nc), then,
inside every channel, system (5) simplifies to

mjkþ1
2
¼ constant; (37a)

xjkþ1
2
r2jkþ1

2
¼ constant; (37b)

mjkþ1
2
€r jkþ1

2
¼ mjkþ1

2
x2

jkþ1
2
rjkþ1

2
� Sjkþ1

2
pjþ1

2kþ1
2
� pj�1

2kþ1
2ð Þ; (37c)

which are the trivial equations of motion of particles with constant
masses and angular momenta. In Appendix C, we show that these
equations can be derived from the Lagrangian formalism.

C. Initial conditions and time stepping

We now outline the initialization and time integration procedures
used in ISM-hydro. Table I summarizes the input parameters of the
problem.

At time t¼ 0, the liner rotates at angular velocity x ¼ X0. The
radial distribution of fluid pressure balances the centrifugal forces

mjk�1
2
X2

0rjk�1
2
¼ Sjk�1

2
pjþ1

2k�1
2
� pj�1

2k�1
2ð Þ; j ¼ 0; …; Nr ; (38)

where the masses of the control volumes and pressures in the fluid cells
are given by

mjk�1
2
¼ 1

2
mj�1

2k�1
2
þmjþ1

2k�1
2

� �
; j ¼ 0; …; Nr; (39a)

m�1
2k�1

2
¼ mNrþ1

2k�1
2
¼ 0; mj�1

2k�1
2
¼ qj�1

2k�1
2
Vj�1

2k�1
2
; j ¼ 1; …; Nr ;

(39b)

p�1
2k�1

2
¼ p0; pj�1

2k�1
2
¼ q0c

2
s

C

qj�1
2k�1

2

q0

� �C

� 1

 !
; j ¼ 1; …; Nr;

(39c)

and the vertical areas and volumes of the fluid cells are determined
using Eqs. (17a) and (11) or Eqs. (35) and (36) based on the initial ver-
tical mesh lines rjjt¼0. The index k in the above equations spans the
range k ¼ 1; …; Nz . Since the initial shape of the liner is cylindrical

and no quantities are dependent on z, these equations are identical for
every horizontal layer.

For the initialization step, we solve Eq. (38) with substitutions
from Eq. (39) using a fixed-point iterative method for unknown cell
densities qj�1=2k�1=2. Every iteration proceeds as follows: the current
cell densities are used to calculate cell masses with Eqs. (39a) and
(39b), then the pressure distribution is determined from Eq. (38), and
the cell densities are updated based on the corresponding cell pres-
sures using Eq. (39c). Iterations start with qj�1=2k�1=2 ¼ q0 and run
until the change in cell densities between two consecutive iterations is
below a specified tolerance. Equation (38) contains Nr þ 1 scalar equa-
tions for every value of k� 1=2; this allows us to determine densities
(and, consequently, masses and pressures) in all Nr mesh cells of a hori-
zontal layer plus the pressure value pNrþ1=2k�1=2, which corresponds to
the total centrifugal pressure exerted by the rotating liner at r¼Rb,

pcf ¼ pNrþ1
2k�1

2
: (40)

In order to push the liner inward, the driving pressure must exceed pcf.
We implement an explicit Runge–Kutta second order method

(RK2, also known as the midpoint method) for integration of system
(5) in time. The simulation time step Dt is a case specific constant cho-
sen to ensure numerical stability; Nt is the number of time steps. The
ISM-hydro algorithm is outlined in Algorithm 1, where matrices
(denoted by bold symbols with a hat) correspond to two-dimensional
arrays of mesh-discretized quantities (e.g., r̂ ¼ frjkþ1=2g; m̂
¼ fmjþ1=2kþ1=2g; v̂ z ¼ fvzjþ1=2kg). We also define matrices for the
mass related to vertical and horizontal cell faces, m̂ver ¼ fmjkþ1=2g
and m̂hor ¼ fmjþ1=2kg, and introduce the state vector s for compact
notation

s ¼ ðt; r̂; m̂; M̂r; M̂z; L̂Þ:
In ISM-hydro, this algorithm is implemented using the MATLAB pro-
graming language.14

TABLE I. List of model input parameters.

Parameter Value Description

Geometry of the rotor

H (m) 5 Height of rotor
Ra (m) 2.2 Inner radius of channels (baffles)
Rb (m) 3.5 Outer radius of channels (baffles) and rotor
Nc 50 Number of channels (inlets)
b 0.2 Baffles obstruction fraction

Properties of the liner (liquid lithium)

q0 (kg/m
3) 500 Reference density in EOS

cs (m/s) 4500 Speed of sound in EOS
C 6 Stiffness exponent in EOS
R0 (m) 2 Initial inner radius
X0 (rad/s) 50 Initial angular velocity

Properties of the ideal gas in the cavity

c 1.4 Adiabatic index
p0 (Pa) 104 Initial pressure
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III. CONVERGENCE STUDY AND COMPARISON
WITH OPENFOAM
A. OpenFOAM solver and setup

OpenFOAM 10 is an open-source Cþþ toolbox used for the cus-
tomization and extension of numerical solvers for continuummechan-
ics problems, especially suited for computational fluid dynamics
(CFD). Its multiphase solvers have been validated against experimental
data relevant to GF’s MTF concept.3 They have also been successfully
verified and extended to account for magnetohydrodynamic effects in
an axisymmetric geometry.2 In the present study, we work with
compressibleInterFoam—an OpenFOAM solver for two compressible,
non-isothermal, and immiscible fluids with interface capturing based
on the volume of fluid (VOF) approach.15 Foundational papers on the
current solver implementation include Refs. 16–18.

Under the VOF framework, an indicator function a, also called
volume phase fraction, is defined as the fractional volume of the cell
occupied by a certain fluid. By convention in Sec. III, its value can vary
continuously from a¼ 1 for a cell full of liquid to a¼ 0 for a cell full of
gas, and the a ¼ 0:5 isocontour is extracted whenever the free surface
location is reported,

a ¼ Vliquid

Vcell
¼

1 if liquid;
0:5 if free surface;
0 if gas:

8<
:

All the fluid properties entering the Navier–Stokes equations are then
defined as an a-weighted average between two phases; for example, the
density is

q ¼ aqliquid þ ð1� aÞqgas:
The OpenFOAM governing equations include the mass conservation,
momentum, and energy equations, as well as an additional transport
equation for the a field. They are solved using the PIMPLE algo-
rithm.19 In the liquid phase, we consider equation of state (20) and
zero shear viscosity so that the governing equations become equivalent
to system (1). In the gas phase, we solve the ideal gas law to approxi-
mate ISM-hydro’s pressure boundary condition (34a). Similar to Sec.
II, gravity, surface tension, and shear viscosity are not considered.

Slip boundary conditions are used for all walls (end plates and baf-
fles). Driving pressures are prescribed for all channel inlets at r¼Rb,
uniformly across each inlet. Gas phase (a¼ 0) is injected at all inlets,
with a high temperature of 104 K. The temperature is also initialized to
104 K in the full domain. High temperatures ensure rapid pressure equil-
ibration in each gas region (cavity and each channel) in order to approx-
imate ISM-hydro’s pressure boundary conditions (34a) and (34b). The
velocity and pressure fields are initialized in the liner region to match
ISM-hydro fields after the initialization step of Sec. IIC.

Taking advantage of the symmetries of the test cases introduced
in Sec. III B below, the OpenFOAM computational domain is reduced
to either half of a horizontal layer for the cylindrical case (i) (with a
symmetry plane located at the midplane of the layer), or half of the
rotor geometry for the shaped cases (ii) and (iii) (with a symmetry
plane located at the equatorial plane z¼ 0). Since the problem is axi-
symmetric, the three-dimensional OpenFOAM mesh is a wedge-
shaped slice with only one cell across the azimuthal direction and a
wedge angle of 3�. The mesh is structured with uniform square cells in
the r–z plane (cell sizes Dr ¼ Dz). For all cases, an adaptive time-
stepping scheme is selected, with a maximum time step of
Dtmax ¼ 5� 10�8 s. No turbulence modeling is applied.

B. Test cases description

Here, we describe the setup of three test cases, two of which (the
main test cases) are used for a convergence study and a detailed com-
parison between ISM-hydro and OpenFOAM, while the third one is
used to demonstrate the limitations of the ISM-hydro method. We
consider the rotor geometry described in Sec. IIA with specific values
of the parameters relevant to GF’s MTF concept listed in Table I. In
particular, we assume that the liner material is liquid lithium.

The initial simulation setup and the resulting liner implosions for
the main test cases are illustrated in Fig. 3, using results from
OpenFOAM. Figure 3(a) displays a cross-sectional (r–z plane) view of
the full OpenFOAM geometry at time t¼ 0, colored by the a field. All
investigated test cases differ only in their applied driving pressures, as
described below.

(i) A cylindrical implosion test case [cylindrical case, Fig. 3(b)].
This case assumes the same driving gas pressure for all inlets.
The liner’s inner surface remains cylindrical throughout the
implosion. As the liner is driven inward, the gas inside the cav-
ity becomes pressurized (by adiabatic compression) and the
liner centrifugal force increases (by angular momentum con-
servation) until the liner’s inner surface radial velocity changes
sign at the turnaround point.

(ii) A shaped implosion test case [shaped case, Fig. 3(c)]. This case
assumes a larger driving gas pressure near the end plates com-
pared to the equatorial plane. More liquid is being pushed out

ALGORITHM 1 ISM-hydro algorithm with Runge–Kutta second order method (RK2).

Input: parameters from Table I, Nr, Nz, Dt, Nt, and �

Set RK2 coefficients c1 ¼ 1=2 and c2 ¼ 1
Set initial mesh r̂; ẑ, find cell volumes and areas
Find initial cell masses m̂ and centrifugal liner pressure pcf
Input: driving pressures PiðtÞ
Set initial state vector s ¼ ð0; r̂; m̂; 0̂; 0̂; m̂verr̂

2X0Þ
for n¼ 1 to Nt do

�� Time stepping loop
s0 ¼ s
for l¼ 1 to 2 do �� Stages of RK2
Find cell volumes and areas for current mesh r̂; ẑ
Find cell densities q̂ and pressures p̂
Find pressure in cavity and driving pressures
Find control volume masses m̂ver and m̂hor from cell masses m̂
Find v̂ r; v̂ z; _̂r and x̂ from state vector s
Set elements of v̂ z inside channels to 0, adjust v̂ r; M̂r and M̂z

if l¼ 1 then �� Save quantities only at full time step
Save quantities t, r̂; m̂; v̂ z; x̂; p̂

end if
Find RHS of system (5), i.e., time derivatives _̂m; _̂Mr; _̂Mz; _̂L
Set time derivative of state vector _s ¼ð1; _̂r ; _̂m ; _̂Mr; _̂Mz; _̂LÞ
Do RK2 stage s ¼ s0 þ clDt _s

end for
end for
Output: saved quantities
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of the channels near the end plates. As a result, the inner sur-
face gradually deviates from cylindricity and forms two waves.
Their crests propagate toward the equatorial plane.
Turnaround happens near the end plates first, and at a larger
radius, compared to the equatorial plane. Peak implosion refers
to the point in time when turnaround occurs at the equatorial
plane.

(iii) A strongly shaped implosion test case with breaking surface
waves (strongly shaped case, not shown in Fig. 3). This case
is analogous to the shaped case, but assumes increased mag-
nitudes of driving gas pressures. The resulting two surface
waves break near peak implosion (their crests overturn). This
test case exemplifies the limitations of the ISM-hydro
method.

We assume that for each channel inlet i, the driving gas pressure
PiðtÞ is a linear ramp followed by a plateau, which is an approximation
of pressures generated by the pneumatic driving system

PiðtÞ ¼ pcf þ ðPmax
i � pcf Þ ts if t < s;

Pmax
i otherwise;

8<
: (41)

where pcf is the total centrifugal pressure from the ISM-hydro initiali-
zation step [defined in Eq. (40)], Pmax

i is a pressure plateau value, and s
is a pressure ramp time constant chosen to be s¼ 1ms for all test
cases. For the cylindrical case, Pmax

i is the same for all inlets i. A para-
bolic parametrization, symmetric with respect to the equatorial plane,
is used to define Pmax

i as a function of inlet i in a more general setting

Pmax
i ¼ Pmax 1þ e

2ði� 0:5Þ
Nc

� 1

� �2

� 1

 ! !
; i ¼ 1; …; Nc;

(42)

where Pmax is the pressure plateau value at the end plates, and the
dimensionless parameter e characterizes the vertical variation of driv-
ing pressures (e¼ 0 means no variation). We consider

(i) Pmax ¼ 27MPa, e¼ 0 for the cylindrical case;
(ii) Pmax ¼ 27MPa, e ¼ 0:35 for the shaped case;
(iii) Pmax ¼ 40:5MPa, e ¼ 0:35 for the strongly shaped case.

The driving gas pressures for the main test cases (i) and (ii) are dis-
played in Fig. 4.

Driving pressures and parameters listed in Table I are chosen
such that the implosion time scales and turnaround radii are relevant
to GF’s MTF concept. For example, in the cylindrical case, turnaround
occurs when the liner’s inner radius becomes approximately 20 times
smaller than its initial value R0 ¼ 2 m. Also, the liner’s inner surface is
Rayleigh-Taylor stable at all times for all test cases. The ideal gas inside
the cavity does not affect the implosion dynamics; its pressure is negli-
gible compared to liner centrifugal forces and driving pressures.

C. ISM-hydro spatial convergence study

In this section, we investigate the spatial (mesh) convergence of
ISM-hydro for main test cases (i) and (ii) and demonstrate that ISM-
hydro implosion trajectories closely approach those from OpenFOAM
as resolution in both codes is increased. To facilitate the convergence
study, we introduce radially non-uniform initial meshes with notation

Nr ¼ N1N0;

which are constructed from a usual uniform mesh with N0 radial cells
by further dividing the innermost cell into N1 equal sub-cells (for a
total of N0 þ N1 � 1 cells in the radial direction). Since the liner
rebounds due to centrifugal forces in these test cases, ISM-hydro’s
solution accuracy is strongly dependent on the local mesh resolution

FIG. 3. The main test cases illustrated with OpenFOAM results. All panels display a cross-sectional (r–z plane) view of the rotor geometry colored by the a field (with liner in
red and ideal gas in blue). (a) Time t¼ 0 for all cases. (b) Cylindrical case at time t¼ 10ms, 0.2 ms before turnaround. (c) Shaped case at time t¼ 12ms, 0.4 ms before peak
implosion. The colored horizontal lines correspond to the four elevations highlighted in Figs. 4 (driving pressures) and 8 (implosion trajectory), with matching colors. In panels
(b) and (c), the black lines inside the liner indicate the liner’s inner surface at 1 ms intervals (time t¼ 0 excluded).
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near the liner’s inner surface (large centrifugal forces are concentrated
in this region near peak implosion). Non-uniform initial meshes with
finer resolution near the liner’s inner surface can speed up simulations
while preserving high accuracy.

Figure 5 displays the results of a convergence study for the cylin-
drical case. In ISM-hydro, this case is equivalent to a one-dimensional
simulation with Nz ¼ Nc ¼ 1. Figure 5(a) shows the full implosion
trajectory predicted by the two codes (highest resolution only), while
other panels zoom in on turnaround to visualize convergence of each
code. Figure 5(b) demonstrates that the implosion trajectory converges
as the number of radial cells Nr is increased. It also confirms that solu-
tion accuracy strongly depends on the local resolution near the liner’s
inner surface, since Nr¼ 400 and Nr ¼ 850 yield very similar trajecto-
ries. Figure 5(c) shows that the OpenFOAM implosion trajectory also
converges as the cell size Dr is decreased. OpenFOAM predicts a
slightly slower and deeper implosion compared to ISM-hydro. This

small discrepancy is due to differing gas treatments. The gas dynamics
in OpenFOAM are two-dimensional with small pressure waves and
nonuniformities in the cavity and the rotor channels, while the gas
pressures in ISM-hydro follow zero-dimensional equations (34a) and
(34b).

Figure 6 displays the results of a convergence study for the shaped
case. Here, we consider only the equatorial implosion trajectory (at
z¼ 0) and report the data near peak implosion. Figure 6(a) shows the
ISM-hydro trajectory convergence as we increase Nz, while keeping the
same radially non-uniform mesh with Nr¼1020. Note that when
changing Nz, we also change the number of rotor channels Nc such
that Nc¼Nz. The driving gas pressures at the channel inlets are still
given by Eqs. (41) and (42) with corresponding Nc. Similarly, Fig. 6(b)
shows trajectory convergence as Nr is increased for a fixed
Nz ¼ Nc ¼ 50. We observe that simulations with Nr ¼ 850 and
Nr¼ 400 yield very similar results again, but the run time for the

FIG. 4. Driving pressure boundary conditions: (a) driving gas pressure plateau value as a function of inlet i for the main test cases and (b) driving gas pressure as a function of
time for the inlets highlighted in panel (a) with matching colors (shaped case). The vertical dotted line indicates t ¼ s, the pressure ramp time constant.

FIG. 5. Cylindrical case convergence study: (a) full implosion trajectory (highest resolution only), (b) ISM-hydro convergence as Nr is increased (Nz ¼ Nc ¼ 1), and (c)
OpenFOAM convergence. Panels (b) and (c) are zoomed-in views centered near turnaround.
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former (	80 s) is almost seven times shorter; see Table II. This confirms
that ISM-hydro can be both fast and accurate if radially non-uniform
meshes are used. Figure 6(c) displays the same trend as Fig. 5(c):
OpenFOAM results converge, and a similar discrepancy in time and
depth is observed between the two codes. Table II summarizes the ISM-
hydro simulations used in the shaped case convergence study.

To estimate the order of spatial convergence (order of accuracy)
of ISM-hydro, we define the average truncation error between two
consecutive approximations of the liner’s implosion trajectory (inner
surface radius) as

eN ¼ hjr0ðt; z;NÞ � r0ðt; z; 2NÞjit;z;
where angle brackets with subscripts denote averaging over the total
implosion time and height of the liner, and N refers to the mesh reso-
lution in either the radial (N¼Nr) or axial (N¼Nz) direction. In
Fig. 7, we report the average truncation errors eN for the trajectories of
Figs. 5 and 6 with a total implosion time of 13ms. From their asymp-
totic behaviors, we can infer the corresponding orders of mesh conver-
gence in ISM-hydro

eN ¼
OðN�1

r Þ for the cylindrical case;
OðN�1

r Þ for the shaped case; Nz fixed;
OðN�1

z Þ for the shaped case; Nr fixed:

8<
:

Therefore, the ISM-hydro method has overall first order accuracy in
space, as expected from the analysis in Sec. II B.

FIG. 6. Shaped case convergence study (equatorial implosion trajectory): (a) ISM-hydro convergence as Nz is increased at fixed Nr¼ 1020, (b) ISM-hydro convergence as Nr is
increased at fixed Nz¼ 50, and (c) OpenFOAM convergence. All panels are zoomed-in views centered near peak implosion.

TABLE II. ISM-hydro shaped case simulations used in the spatial (mesh) conver-
gence study. Results from the simulation with Nr¼ 6400 are used for comparison
with OpenFOAM in Sec. III D.

Nr Nz Dt (ls) � (m2/s) Run time (s)

50 50 2 64 8.55
100 50 1 32 33.3
200 50 0.5 16 136
400 50 0.25 8 539
850 50 0.25 8 78.2
800 50 0.125 4 2213
1600 50 0.0625 2 10 010
3200 50 0.031 25 1 42 566
6400 50 0.015 625 0.5 200 403
1020 50 0.5 25 29.1
1020 100 0.5 25 48.7
1020 200 0.5 25 93.9
1020 400 0.5 25 162
1020 800 0.5 25 288
1020 1600 0.125 25 2137
1020 3200 0.031 25 25 15 610
1020 6400 0.007 8125 25 151 911 FIG. 7. ISM-hydro average truncation error eN for different resolutions and test

cases.
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D. Comparison with OpenFOAM

After establishing the spatial convergence of ISM-hydro, in this
section, we demonstrate that ISM-hydro converges to a solution that is
very close to the one obtained with OpenFOAM. For this purpose, we
show in Figs. 8–13 quantitative and qualitative comparisons between
the highest resolution ISM-hydro and OpenFOAM simulations of the
shaped case. The OpenFOAM test case and simulation results are
provided.20

Figure 8 displays the liner’s inner surface trajectory at four differ-
ent elevations. The trend is similar to results in Figs. 5 and 6;
ISM-hydro predicts a slightly faster implosion. Note that a similar time
discrepancy can be observed at all elevations, suggesting that the pre-
dicted shapes are comparable for both codes but shifted in time. The
magnitude of this time shift is also consistent with the cylindrical case
results in Fig. 5.

In Figs. 9–13, four specific times are highlighted throughout the
implosion. In chronological order: (a) t¼ 0ms, initial simulation time;
(b) t¼ 12ms, roughly 0.5ms before peak implosion; (c) t¼ 12.6ms,
roughly 0.1ms after peak implosion; (d) t¼ 12.9ms, roughly 0.4ms
after peak implosion. The gas phase is masked out in all results.

In Figs. 9–12, liner fields in the r-z plane are visualized and com-
pared for the two codes. The four panels correspond to the four times
listed above, in chronological order from the left to the right. All the
information contained in Figs. 9–12 is condensed into a single anima-
tion,20 from t¼ 0 to t¼ 13.2ms with a minimum time sampling of
10 ls around peak implosion.

Figure 9 is particularly informative as it reveals internal flow pat-
terns. An OpenFOAM passive scalar is introduced at time t¼ 0 mark-
ing a specific partition of the liner into vertical layers, which
corresponds to a radially non-uniform initial mesh with Nr ¼ 510.

FIG. 8. Shaped case implosion trajectory. The liner’s inner surface trajectory is plotted against time at four different elevations shown with corresponding colors in Fig. 3(c). (a)
Full implosion trajectory. (b) A zoomed-in view centered near peak implosion. The vertical dotted lines indicate t¼ 12, t¼ 12.6, and t¼ 12.9 ms, corresponding to the
highlighted times of Figs. 9–13.

FIG. 9. Vertical fluid layer deformations at four highlighted times. A subset of ISM-hydro vertical mesh lines (black dotted lines) is superimposed on the OpenFOAM passive
scalar field (alternating red and blue layers). These mesh lines and passive scalar field are advected with the fluid flow in corresponding codes.
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FIG. 10. Pressure field p in OpenFOAM (above equator) and ISM-hydro (below equator) at four highlighted times.

FIG. 11. Angular velocity field x in OpenFOAM (above equator) and ISM-hydro (below equator) at four highlighted times.

FIG. 12. Axial velocity field vz in OpenFOAM (above equator) and ISM-hydro (below equator) at four highlighted times.
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This partition is visualized with alternating red and blue colors, corre-
sponding to values 0 and 1 of the passive scalar, respectively. During
implosion, this passive scalar is advected with the fluid flow without
diffusion. The finer subdivision of vertical layers near the liner’s inner
surface helps to visualize the flow deep into implosion, since geometri-
cal convergence tends to thicken vertical layers close to the axis of rev-
olution. We then overlay a subset of ISM-hydro’s vertical mesh lines rj
(black dotted lines), following an identical partition. Several conclu-
sions can be drawn from their comparison. First, since ISM-hydro’s
vertical mesh lines very closely track the interfaces between colored
layers during the implosion, we infer that the two codes predict very
similar internal flows and the flow stays laminar. Second, it suggests
that ISM-hydro’s underlying assumption is valid in this case: vertical
fluid layers are moderately deformed throughout the implosion with-
out topological changes, and boundaries between these layers are well
approximated by ISM-hydro’s structured quadrilateral mesh. Finally, it
confirms that the two codes predict the same liner shape, with a slight
time delay for OpenFOAM.

Figure 10 displays the dynamics of the pressure p during implo-
sion in both codes. At t¼ 0ms, the pressure distribution in the liner
balances the centrifugal forces. As time progresses, the pressure
increases and reaches a maximum at peak implosion near the equato-
rial plane. This is due to the very small equatorial turnaround radius,
resulting in very large centrifugal forces. Following peak implosion, a
pressure wave propagates outward.

Figure 11 shows the evolution of the angular velocity x in both
codes. At t¼ 0ms, the angular velocity is initialized uniformly at
x¼ 50 rad/s. Due to conservation of angular momentum, the angular
velocity of each fluid element increases when it approaches the axis of
revolution:x 	 r�2.

Figure 12 compares the dynamics of the axial velocity vz in both
codes. At t¼ 0ms, the axial velocity is equal to zero everywhere.
During implosion, the fluid flows toward the equatorial plane, since
shaping is achieved by pushing more liquid (higher mass flow rate)
near the end plates compared to the equatorial plane. The equatorial
(up-down) symmetry of the driving pressures leads to equatorial

antisymmetry in the vz field. High velocities can be observed at the
same location as the pressure wave shown in Fig. 10. Note that the
axial velocity is essentially zero in all channels (r 
 Ra), because of
the baffles. Finer flow structures (vortices) can be observed in the
OpenFOAM simulation at the channel exits, especially near the end
plates where the mass flow rate is the highest.

Figure 13 displays pressure p, angular velocity x, and axial
velocity vz fields sampled along the horizontal planes z¼ 0.05,
z¼ 0.05, and z¼ 0.7 m, respectively. Different lines correspond to
the four highlighted times. There is excellent agreement between
ISM-hydro and OpenFOAM results. After peak implosion, the pres-
sure mismatch is essentially due to the time delay between the two
codes. The difference in axial velocity at t¼ 12.6ms (green lines) is
also related to the time delay. Figures 12(b) and 12(c) show that,
around peak implosion, the axial velocity changes sign very rapidly
at small radii.

The limitations of the ISM-hydro method are now explored and
illustrated with strongly shaped case (iii). The value of Pmax in the
strongly shaped case has been multiplied by a factor 1.5 compared to
the shaped case. Increasing Pmax for a given e (or increasing the abso-
lute value of e for a given Pmax) tends to accentuate deformations of
the vertical fluid layers.

Figure 14(a) displays the strongly shaped case before peak
implosion, at t¼ 9.23ms. Since all inlet pressures are scaled by the
same factor, the implosion is faster and turnaround occurs closer to
the axis of revolution for all elevations. The two-surface waves
become more pronounced and skewed toward the equatorial plane.
Near peak implosion, the waves break in OpenFOAM (their crests
overturn) and the liner’s inner surface can no longer be described by
a single-valued function of the form r0ðzÞ as assumed in Eq. (3). By
construction, the ISM-hydro mesh cannot track this type of free sur-
face shape.

Another limitation relates to intra-layer mass advection. ISM-
hydro conserves the total mass of every vertical layer. For each layer,
the mass distribution is initially uniform among the Nz cells. As the
simulation progresses, if the driving gas pressures vary vertically

FIG. 13. Radial profiles of pressure p, angular velocity x and axial velocity vz at four highlighted times sampled along z¼ 0.05, z¼ 0.05, and z¼ 0.7 m, respectively. The gray
shaded area represents the region r 
 Ra.
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(e 6¼ 0), the mass distribution will gradually deviate from uniformity
for layers located at least partially outside the channels. As an example,
Fig. 14(b) displays the relative change in cell mass n for the strongly
shaped case at t¼ 9.23ms, where n is defined for all indices
jþ 1=2; kþ 1=2 as

njþ1
2kþ1

2
¼ mjþ1

2kþ1
2
�mjþ1

2kþ1
2
jt¼0

mjþ1
2kþ1

2
jt¼0

: (43)

In some extreme cases with pronounced flows in the axial direction,
one or more cell masses may approach zero (n ¼ �1) and lead to
numerical instabilities. Different numerical strategies can be employed
to circumvent this limitation, such as a careful choice of the initial
mesh radial distribution, the merging of adjacent vertical layers if a cell
mass drops below some threshold, and the use of cell mass or cell
radial size limiters. In general, the topology and mass related limita-
tions illustrated in Fig. 14 can arise for mesh lines and cells located not
only at the surface, but in the bulk of the fluid as well.

IV. CONCLUSION

ISM-hydro is an interface tracking, finite volume code solving the
Euler equations for a rotating compressible fluid in an axisymmetric
setting. The code is a novel implementation of the mixed Lagrangian–
Eulerian approach and, as such, it inherits both its advantages and lim-
itations. The first of these advantages is that ISM-hydro is naturally
designed to accurately track the free surface of a moving fluid. This is
especially important when modeling an MTF system with plasma,
since the free surface of the liner determines the shape and boundary
conditions for the magnetized plasma target.

The other advantage of our code over more traditional fluid
dynamics software is speed. We show that even coarse resolution ISM-
hydro simulations of liquid liner implosions compare very well against
equivalent OpenFOAM simulations and only require run time on the
order of one minute on a single core. As resolution in both codes is
increased, their solutions converge very closely. The agreement extends
beyond prediction of the free surfaces, with almost identical internal
flow patterns between the two codes.

In addition, the ISM-hydro finite volume discretization satisfies
an exact balance of kinetic energy—a property inherent to the continu-
ous Euler equations. If the fluid internal energy is incorporated into
the numerical scheme, such a property leads to the exact discrete ana-
logue of the energy conservation law. Reproducing the conservation
law in discrete form improves the physical fidelity of the numerical
scheme by imposing more constraints.

The resulting ISM-hydro scheme has first order accuracy in
space and uses second order explicit integration in time (Runge–
Kutta second order method). Artificial viscosity is introduced for sta-
bility of the numerical scheme. The first order of spatial accuracy is
sufficient for our purpose of simulating the liner’s implosion trajec-
tory. We note that the scheme is not specifically designed to simulate
shocks; however, the shock propagation is well captured in the pre-
sented test cases with a very good quantitative comparison against
OpenFOAM.

The presented method has some limitations by construction. Its
underlying structured quadrilateral mesh can only represent free surfa-
ces and internal bounding lines that can be expressed mathematically
as a single-valued function mapping from z to r. Some scenarios with
large distortions of the vertical layers or significant intra-layer mass
advection may not be predicted accurately and can result in numerical
instabilities. Various numerical strategies can be employed to extend
the range of applicability of the method, trading accuracy in the pre-
dictions for numerical robustness.

Ultimately, the ISM-hydro method can be extended to include
thermal and magnetohydrodynamic effects and be consistently cou-
pled with a plasma model for MTF simulations.
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APPENDIX A: REDUCTION OF CONTINUOUS
EQUATIONS TO FINITE VOLUME FORM

Here, we demonstrate how the discrete equations (5) are
obtained from the original continuous equations (1). Every equation
in system (1) has the general form

_a ¼ �r � ðavÞ þ g: (A1)

We introduce the control volume integral of quantity a; for exam-
ple, if the control volume corresponds to a mesh cell (as for density
q), then

Ajþ1
2kþ1

2
(

ð
Vjþ1

2kþ1
2

a dV :

We calculate its time derivative, taking into account the motion of
the control volume, substituting Eq. (A1) and applying Gauss’s
divergence theorem

dAjþ1
2kþ1

2

dt
(

ð
@Vjþ1

2kþ1
2

a vC � dSþ
ð

Vjþ1
2kþ1

2

�r � ðavÞ þ gð Þ dV

¼
ð

@Vjþ1
2kþ

1
2

a ðvC � vÞ � dSþ
ð

Vjþ1
2kþ

1
2

g dV ; (A2)

where @Vjþ1=2kþ1=2 denotes the boundary surface of the control
volume, dS � n dS is the area element of this surface combined
with the unit normal vector n pointing outward, and vC is the
velocity of this surface. For our radially Lagrangian mesh, the
left and right boundaries of the cell associated with vertical mesh
lines are impenetrable (material) boundaries for the fluid flow v,
so the following condition is satisfied locally along every vertical
mesh line rjðt; zÞ (this is also true for the lines with half-integer
index rjþ1=2ðt; zÞ bounding corresponding control volumes)

ðvC � vÞ � n ¼ 0 along every rjðt; zÞ:
At the cell’s top and bottom boundaries, since all horizontal mesh
lines are steady, we have

vC � n ¼ 0 along every zk:

Therefore, the only contributions to the surface integral in Eq. (A2)
come from the top and bottom horizontal boundaries, namely,

ð
@Vjþ1

2kþ1
2

aðvC�vÞ �dS¼
ðrjþ1k

rjk

ðavzÞjz¼zk 2prdr�
ðrjþ1kþ1

rjkþ1

ðavzÞjz¼zkþ1
2prdr:

Defining the discrete axial flux and the source term as

ðrjþ1k

rjk

ðavzÞjz¼zk 2prdr ) qAjþ1
2k
;

ð
Vjþ1

2kþ
1
2

g dV ) GA
jþ1

2kþ1
2
;

and noting that the full and partial time derivatives are identical for
a univariate function (time dependence only), we can rewrite Eq.
(A2) as

_Ajþ1
2kþ1

2
¼ qAjþ1

2k
� qAjþ1

2kþ1 þ GA
jþ1

2kþ1
2
; (A3)

which is exactly the form of the equations in system (5)
An important corollary of Eq. (A3) is the discrete form of the

fluid velocity divergence. Indeed, Eq. (A1) is satisfied identically if
we choose

a ¼ 1; g ¼ r � v:
With this choice, Eq. (A3) gives the time derivative of the cell
volume

_V jþ1
2kþ1

2
¼ qVjþ1

2k
� qVjþ1

2kþ1 þ ðr � vÞjþ1
2kþ1

2
Vjþ1

2kþ1
2
; (A4)

where the last term, containing the discrete velocity divergence,
comes from the approximationð

Vjþ1
2kþ1

2

ðr � vÞ dV ) GV
jþ1

2kþ1
2
¼ ðr � vÞjþ1

2kþ1
2
Vjþ1

2kþ1
2
:

Rearranging the terms in Eq. (A4), we obtain

ðr � vÞjþ1
2kþ1

2
¼

_V jþ1
2kþ1

2
þ qVjþ1

2kþ1 � qVjþ1
2k

Vjþ1
2kþ1

2

: (A5)

The volume of the cell, given by Eqs. (11) or (36), only changes due
to the radial motion of its vertical boundaries

_V jþ1
2kþ1

2
¼ _r jþ1kþ1

2
Sjþ1kþ1

2
� _r jkþ1

2
Sjkþ1

2
; (A6)

where the areas of the corresponding vertical cell boundaries are
determined by Eqs. (17a) or (35). The “volume flux” through the
horizontal cell boundaries can be approximated using the discrete
axial velocity as

ðrjþ1k

rjk

vzjz¼zk 2prdr ) qVjþ1
2k
¼ vzjþ1

2k
Sjþ1

2k
; Sjþ1

2k
¼ p r2jþ1k � r2jk

� �
:

(A7)

Substituting Eqs. (A6) and (A7) into Eq. (A5), we obtain the dis-
crete form of the velocity divergence as in Eq. (22).

APPENDIX B: FLUXES AND SHEAR TERMS

Here, we outline the derivation of the RHS terms in system (5),
namely, the fluxes and the shear terms in the radial velocity and
axial pressure.
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Using Gauss’s divergence theorem, the full pressure force in
Eq. (5c) is given as

f pzjþ1
2k
( �

ð
Vjþ1

2k

p0z dV ¼ �
ð

Vjþ1
2k

r � ðp ezÞ dV ¼ �
ð

@Vjþ1
2k

p dSz; (B1)

i.e., it is expressed as the pressure integrated over the horizontal ele-
ments of the surface bounding the control volume. In the above
equation, we used the identities

r � ðp ezÞ ¼ rp � ez þ pr � ez ¼ p0z ; r � ez ¼ 0;

where ez is the unit vector in the axial direction. The surface integral
in Eq. (B1) can be discretized assuming constant values of pressure
along different parts of the control volume surface

f pzjþ1
2k
¼ pjþ1

2k�1
2
p r2jþ1k�1

2
� r2jk�1

2

� �
� pjþ1

2kþ1
2
p r2jþ1kþ1

2
� r2jkþ1

2

� �
þ pjk�1

2
p r2jk�1

2
� r2jk

� �
þ pjkþ1

2
p r2jk � r2jkþ1

2

� �
þ pjþ1k�1

2
p r2jþ1k � r2jþ1k�1

2

� �
þ pjþ1kþ1

2
p r2jþ1kþ1

2
� r2jþ1k

� �
:

(B2)

Here, we define the pressure value at every side face (vertical bound-
ary) of the control volume as a weighted average between two fluid
cells sharing that face

pjkþ1
2
¼ wr

jkþ1
2
pj�1

2kþ1
2
þ wl

jkþ1
2
pjþ1

2kþ1
2
; wr

jkþ1
2
þ wl

jkþ1
2
¼ 1: (B3)

Note that the weights in Eq. (B3) are the same as those defined in
Eq. (28), but in the present derivation, they are introduced as free
parameters that have yet to be determined. Equation (B2) identi-
cally satisfies the pressure force balance condition (24) since for
adjacent control volumes the corresponding force terms enter
with opposite signs and, therefore, cancel when all forces are
summed up. Substituting Eq. (B3) into Eq. (B2) and rearranging
the terms, we obtain the full axial pressure force given by Eq.
(16b) with Eq. (31).

Now we consider a discrete analogue of the kinetic energy bal-
ance (25). The discrete form of the total kinetic energy is

ð
V

1
2
qv2dV)

Ekin¼
X
j;k

1
2

mjkþ1
2
v2rjkþ1

2
þmjþ1

2k
v2zjþ1

2k
þmjkþ1

2
x2

jkþ1
2
r2jkþ1

2

� �

¼
X
j;k

1
2

M2
rjkþ1

2

mjkþ1
2

þ
M2

zjþ1
2k

mjþ1
2k
þ

L2jkþ1
2

mjkþ1
2
r2jkþ1

2

0
@

1
A: (B4)

Here and below, the summation is performed over the appropriate
full range of indices j and k. The time derivative of Ekin is

_Ekin ¼
X
j;k

vrjkþ1
2
_Mrjkþ1

2
�

_mjkþ1
2
v2rjkþ1

2

2
þ vzjþ1

2k
_Mzjþ1

2k
�

_mjþ1
2k
v2zjþ1

2k

2
þ xjkþ1

2
_Ljkþ1

2
�

_mjkþ1
2
x2

jkþ1
2
r2jkþ1

2

2
�mjkþ1

2
x2

jkþ1
2
rjkþ1

2
_r jkþ1

2

 !

¼
X
j;k

vrjkþ1
2
f prjkþ1

2
þ vzjþ1

2k
f pzjþ1

2k

� �
þ
X
j;k

vrjkþ1
2
qMr
jk � qMr

jkþ1

� �
�
v2rjkþ1

2

2
qmjk � qmjkþ1

� � !

þ
X
j;k

vzjþ1
2k

qMz

jþ1
2k�1

2
� qMz

jþ1
2kþ1

2

� �
�
v2zjþ1

2k

2
qmjþ1

2k�1
2
� qmjþ1

2kþ1
2

� � !

þ
X
j;k

xjkþ1
2
qLjk � qLjkþ1

� �
�
x2

jkþ1
2
r2jkþ1

2

2
qmjk � qmjkþ1

� �þmjkþ1
2
x2

jkþ1
2
rjkþ1

2
dvrjkþ1

2

 !
; (B5)

where we substituted the time derivatives of the momenta from Eqs.
(5b)–(5d) and assumed that the masses of the control volumes change
due to the corresponding mass fluxes, similar to Eq. (5a). We then
regrouped all the terms into four distinct sums in the final expression of
Eq. (B5). The first, second, and third sums contain all the terms scaling
as p, v2r vz , and v3z , respectively, while the last sum contains all the terms
depending on x. According to Eq. (25), only pressure terms can con-
tribute to the final result; therefore, all sums but the first one must be
equal to zero. This gives us the conditions for determining consistent
expressions for the radial velocity shear term and corresponding fluxes.

Substituting the general form of radial velocity (15) and the
components of pressure force (16) with (31) into the first sum and
rearranging terms, we obtain

X
j;k

vrjkþ1
2
f prjkþ1

2
þ vzjþ1

2k
f pzjþ1

2k

� �
¼
X
j;k

�_r jkþ1
2
Sjkþ1

2
pjþ1

2kþ1
2
�pj�1

2kþ1
2ð Þ� vzjþ1

2k
Sjþ1

2k
pjþ1

2kþ1
2
�pjþ1

2k�1
2ð Þ

� �
þ
X
j;k

dvrjkþ1
2
f prjkþ1

2
þ vzjþ1

2k
df pzjþ1

2k

� �
¼
X
j;k

pjþ1
2kþ1

2
ðr �vÞjþ1

2kþ1
2
Vjþ1

2kþ1
2

þ
X
j;k

Dpjkþ1
2

�
�dvrjkþ1

2
Sjkþ1

2
þ vbzjkþ1

2
p r2jkþ1

2
� r2jk

� �

þvtzjkþ1
2
p r2jkþ1� r2jkþ1

2

� ��
; (B6)
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where we introduced the discrete velocity divergence, as in Eq. (22),
and axial velocities vbzjkþ1=2 and vtzjkþ1=2, as in Eq. (27). The resulting
form of Eq. (B6) gives us a discrete analogue of the RHS of Eq. (25)
with the velocity divergence in the bulk of the fluid domain, pro-
vided that the last sum in Eq. (B6) is zero. This condition leads to
Eq. (26)—the discrete expression for the radial velocity shear term.

To zero out the second sum in Eq. (B5), we assume the most
general form of the radial momentum flux with linear dependence
on the radial velocity

qMr
jk ¼ Bjk�1

2
vrjk�1

2
þ Cjkþ1

2
vrjkþ1

2
: (B7)

Substituting this into the second sum in Eq. (B5) and rearranging
terms, we obtain the equation

0 ¼
X
j;k

 
vrjk�1

2
vrjkþ1

2
Bjk�1

2
� Cjkþ1

2

� �

þv2rjkþ1
2

Cjkþ1
2
� Bjkþ1

2
� qmjk

2
þ qmjkþ1

2

� �!
;

which has solution

Bjk�1
2
¼ Cjkþ1

2
¼ qmjk

2
: (B8)

Equation (B7) with coefficients (B8) gives us the radial momentum
flux as in Eq. (29a).

The third sum in Eq. (B5) is handled in the same way, leading
to the axial momentum flux as in Eq. (29b).

Finally, to zero out the last sum in Eq. (B5), we assume the fol-
lowing form of the angular momentum flux

qLjk ¼
Djk

2
xjk�1

2
þ xjkþ1

2

� �
: (B9)

Then, the last sum in Eq. (B5) leads to

0 ¼ Djk � Djkþ1 � r2jkþ1
2
qmjk � qmjkþ1

� �
þmjkþ1

2

Dz
vbzjkþ1

2
r2jkþ1

2
� r2jk

� �
þ vtzjkþ1

2
r2jkþ1 � r2jkþ1

2

� �� �
: (B10)

Since at each level z¼ zk all the fluxes must be proportional to the
axial velocity vz, we can split Eq. (B10) into two independent
equations

Djk ¼ r2jkþ1
2
qmjk �

mjkþ1
2
vbzjkþ1

2

Dz
r2jkþ1

2
� r2jk

� �
; (B11a)

Djkþ1 ¼ r2jkþ1
2
qmjkþ1 þ

mjkþ1
2
vtzjkþ1

2

Dz
r2jkþ1 � r2jkþ1

2

� �
: (B11b)

Reindexing Eq. (B11b), we can remove Djk and obtain

qmjk ¼
mjk�1

2
vtzjk�1

2
r2jk � r2jk�1

2

� �
þmjkþ1

2
vbzjkþ1

2
r2jkþ1

2
� r2jk

� �
Dz r2jkþ1

2
� r2jk�1

2

� � : (B12)

The total mass flux through level z¼ zk must be the same whether it
is written in terms of qmjk or in terms of qmjþ1=2k, i.e.,X

j

qmjk ¼
X
j

qmjþ1
2k
: (B13)

Using Eqs. (27) and (23), the axial velocities in Eq. (B12) can be
expressed as functions of mass fluxes qmjþ1=2k. Substituting Eq. (B12)
into Eq. (B13) and treating each qmjþ1=2k term as independent, we
arrive at

mjþ1
2k
¼

wr
jk�1

2
mjk�1

2
r2jk � r2jk�1

2

� �
þ wr

jkþ1
2
mjkþ1

2
r2jkþ1

2
� r2jk

� �
r2jkþ1

2
� r2jk�1

2

� � þ
wl
jþ1k�1

2
mjþ1k�1

2
r2jþ1k � r2jþ1k�1

2

� �
þ wl

jþ1kþ1
2
mjþ1kþ1

2
r2jþ1kþ1

2
� r2jþ1k

� �
r2jþ1kþ1

2
� r2jþ1k�1

2

� � : (B14)

Finally, we sum up both sides of the above equation over all indices j
and k (over the whole fluid domain) to obtain the total fluid mass

X
j;k

mjþ1
2k
¼
X
j;k

mjkþ1
2

r2jkþ1
2
� r2jk

r2jkþ1
2
� r2jk�1

2

þ
r2jkþ1 � r2jkþ1

2

r2jkþ3
2
� r2jkþ1

2

0
@

1
A:

In order to have the total fluid mass on the RHS of this equation,
the expression in brackets must be equal to 1 for each mjkþ1=2 term,
i.e.,

r2jkþ1
2
� r2jk

r2jkþ1
2
� r2jk�1

2

þ
r2jkþ1 � r2jkþ1

2

r2jkþ3
2
� r2jkþ1

2

¼ 1; (B15)

which is an equation for determining rjk. Assuming that rjk only
depends on the position of the neighboring points, rjkþ1=2 and
rjk�1=2, we obtain the general relation from Eq. (B15),

r2jk ¼ bjr
2
jk�1=2 þ ð1� bjÞr2jkþ1=2;

where bj is an arbitrary constant. We choose bj ¼ 1=2 since
this provides the best approximation order for a mesh uniform in
z, leading to Eq. (18). With this expression for r2jk, Eq. (B14)
becomes

mjþ1
2k
¼1
2

wr
jk�1

2
mjk�1

2
þwr

jkþ1
2
mjkþ1

2
þwl

jþ1k�1
2
mjþ1k�1

2
þwl

jþ1kþ1
2
mjþ1kþ1

2

� �
:

(B16)

Here, the mass on the LHS can only depend on the masses of the
two adjacent mesh cells in the same vertical layer, mjþ1=2k�1=2 and
mjþ1=2kþ1=2. This is satisfied if the terms inside the brackets obey the
following condition for all k,

wr
jkþ1

2
mjkþ1

2
þ wl

jþ1kþ1
2
mjþ1kþ1

2
¼ mjþ1

2kþ1
2
:
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In other words, the mass of a mesh cell ð jþ 1=2; kþ 1=2Þ is
divided between the left ð j; kþ 1=2Þ and right ð jþ 1; kþ 1=2Þ con-
trol volumes

mjþ1
2kþ1

2
¼ ml

jþ1
2kþ1

2
þmr

jþ1
2kþ1

2
; (B17a)

mjkþ1
2
¼ ml

jþ1
2kþ1

2
þmr

j�1
2kþ1

2
; (B17b)

wr
jkþ1

2
¼

ml
jþ1

2kþ1
2

mjkþ1
2

; wl
jkþ1

2
¼

mr
j�1

2kþ1
2

mjkþ1
2

: (B17c)

This division of a mesh cell is arbitrary; for the best approximation
order, we choose division into equal masses

ml
jþ1

2kþ1
2
¼ mr

jþ1
2kþ1

2
¼ mjþ1

2kþ1
2

2
:

As a result, Eqs. (B17b) and (B16) lead to control volume masses
definition (12), Eq. (B17c) gives weights definition (28), Eq. (B12)
gives the mass flux in Eq. (30a), and Eq. (B9) with Eq. (B11a) lead
to the angular momentum flux in Eq. (29c).

APPENDIX C: LAGRANGIAN NATURE
OF THE ONE-DIMENSIONAL EQUATIONS OF MOTION

Here, we show that the one-dimensional equations of fluid
motion (37) inside the rotor channels can be derived using the
Lagrangian formalism. We introduce the Lagrangian function as
(for simplicity indices k are omitted)

L � Ekin � U ¼
X
j

mj

2
_r2j þ x2

j r
2
j

� �
�
X
j

Ujþ1
2
;

where Ujþ1=2 is the internal energy of the fluid cell jþ 1=2. Treating
rj as a generalized coordinate, and _r j and xj as generalized velocities,
we obtain the Euler-Lagrange equations of motion

d
dt

@L

@ _r j

 !
¼ @L

@rj
;

d
dt

@L

@xj

 !
¼ 0:

After substitution ofL , we have

d
dt

mj _r j
� � ¼ mjx

2
j rj �

@U
@rj

; (C1a)

d
dt

mjxjr
2
j

� �
¼ 0: (C1b)

The total change of internal energy due to fluid cells motion is
related to the work done by the pressure of each cell

dU ¼ �
X
j

pjþ1
2
dVjþ1

2
:

Only two terms from this sum (with the cell volumes depending on
rj) contribute to the partial derivative of internal energy

@U
@rj

¼ �pj�1
2

@Vj�1
2

@rj
� pjþ1

2

@Vjþ1
2

@rj
¼ Sj pjþ1

2
� pj�1

2ð Þ; (C2)

since

dVj�1
2
¼ �dVjþ1

2
¼ Sjdrj:

Substituting Eq. (C2) in Eq. (C1a) and noting that each mass mj is
constant, we obtain Eq. (37).
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