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Scales and Regimes

General Fusion (GF) is aiming to build fusion power plants using Magnetized Target Fusion (MTF). In a GF-MTF device a three step process occurs: Starting with coaxial
helicity injection, plasma is formed into a spherical tokamak. A moving liquid metal wall moves inward and the injector mouth is closed off. Finally the plasma is compressed
and reaction rates peak. This novel scheme poses unique problems in realizing the appropriate physics and numerics required to simulate such a system.

In the table below we summarize characteristic, anticipated scales and properties relevant to the design of whole-device modelling codes for a large MCF tokamak (ITER-like)
and a GF-MTF power plant device [1]. These dictate the differences between the simulation requirements for the design and characterization of a GF-MTF device and an MCF
tokamak.

For both devices we consider a Deuterium plasma. Parameters are from designs where possible, and filled in with projections where needed. Note that for all devices,

MTF Whole-Device Modelling

In predicting the fusion yield for a MTF device, the desired
capabailites for whole device modelling include

e 3D dynamics of the liquid metal wall

e Wall interaction with the plasma through magnetic fields,
forces, and heat loads

e Impurity production, transport, and ionization

e Evolution and nonlinear dynamics of the plasma affecting
stability and confinement
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a two-sided multifluid version of this to model the
compressing liquid metal wall.
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