
• Histograms showing the probability distribution for the q at the 5% ത𝜓 intervals

• Cyan bars show true values from testcase data
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where 

• A: given equilibrium is “truth” 

• B: measurement recorded 

• P(A) is uniform
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where 𝑚′𝑖 and 𝑚𝑖 are recorded and 

synthetic measurements for the i-th probe

• P(B) chosen to set σ𝑃 𝐴 𝐵 = 1

Inputs to FLAGSHIPS 

• 𝜓 boundary conditions on the vessel wall determined from DC coil current 

modelled in FEMM matched against flux loop measurements, or 

approximate calculations based on the history of B-poloidal on the wall

• Current density profile, modelled with the Nevins lambda 

𝜆 ത𝜓 = 𝜆0 exp 𝑎 ത𝜓 + 𝑏 ത𝜓2 − 𝑟 ത𝜓𝑛 ,

we specify centroid c instead of ‘r’, using a solver to find ‘r’

Polarimetry (FR), 𝑓 =
𝑒3

2𝜋𝑚2𝑐4
∫ 𝑛𝑒𝐵 ⋅ 𝑑𝑙Interferometry (IF), 𝑛𝑎𝑣𝑔 =

1

𝐿
∫ 𝑛𝑒𝑑𝑙

Magnetic probes in metal wall 

• Mirnov probes embedded in bore holes and shielded by a thin layer of 

stainless steel. 

• Signals processing required to recover high frequency behaviour

Plasma injector 3 (Pi3) at General Fusion Plasma equilibrium

Using density for reconstruction

Sensitivity Analysis
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FLAGSHIPS – General Fusion’s GS solver

The Grad-Shafranov (GS) equation [1, 2] describes an axisymmetric MHD equilibrium 
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• Weak form of GS equation solved with FEniCS
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• Direct solve of GS equation adjusts LCFS to 

externally applied fields

• Code is 90% Python with some core 

components in C++ and C# for speed

• Domain covers vacuum region with unstructured 

mesh
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• Original Bayesian reconstruction is time-independent

• We apply time constraints by sampling trajectories of equilibria according 

to the posterior PDFs of each time slice

• Currently we apply a single binary constraint: helicity must not increase

Laser probes

Look-up tables (LUT) of pre-calculated equilibria

• The 3 most observable parameters with external magnetic probes are

• For circular cross-section, 𝛽𝑝 and ℓ𝑖 are combined in Λ ≡ 𝛽𝑝 + ℓ𝑖/2

• A proxy for internal inductance is the lambda centroid, 𝑐, that can be 

computed without solving the GS equation

𝑐 =
∫ ത𝜓𝜆( ത𝜓)𝑑 ത𝜓

∫ 𝜆( ത𝜓)𝑑 ത𝜓
.

• FR polarimetry chords help constrain internal current density profile

• Interferometry chords help constrain plasma density profile

 Internal inductance, ℓ𝑖 Plasma current, 𝐼𝑝  Poloidal beta, 𝛽𝑝

• Pressure profile,𝑝 𝜓 = 𝑝0 1 − 𝜓2 2

• Constraints on 𝐼𝑝 or on closed 

poloidal flux

• Constraints on pressure set by 𝛽𝑝𝑜𝑙1

• Current ratio 𝐼𝑝/𝐼𝑠ℎ𝑎𝑓𝑡
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A 7-dimension LUT is created with axes:

• Plasma current over shaft plasma, 𝐼𝑝/𝐼𝑠ℎ𝑎𝑓𝑡

• Poloidal beta, 𝛽𝑝1 = 2𝜇0𝑝𝑣𝑎/< 𝐵𝑝𝑜𝑙 >𝑠𝑎
2

• Lambda centroid, 𝑐

• Nevins parameters, 𝑎, 𝑏, 𝑛

• Magnitude of magnetic diffusion at wall (spatial profile fixed) normalized by 

𝐼𝑠ℎ𝑎𝑓𝑡

• Magnitude of vacuum flux at wall (spatial profile fixed) normalized by 𝐼𝑠ℎ𝑎𝑓𝑡

Each table contains 1-3 million entries

Bayes theorem 

𝑃 𝐴 𝐵 =
𝑃 𝐵 𝐴 𝑃(𝐴)

𝑃(𝐵)

𝑃(𝐴|𝐵) is computed for each equilibrium in the LUT (+ interpolation) and 

probability density functions (PDF)  are calculated and plotted as histograms for 

any scalar property value.

WARNING: the normalization assumes that the LUT covers all possible 

equilibria

• Measurement uncertainties are shown as Gaussian curves

• Prior and posterior cumulative density functions (CDF) are shown as 

dashed and solid blue lines respectively

• When prior and posterior CDFs are similar, we know nothing about that 

quantity

• For safety factor and lambda a smattering of profiles within the 1-sigma 

group is shown

• Yellow lines are more probable profiles, whereas the blurring indicates the 

uncertainties

An equilibrium is generated from an assumed pressure profile, and hence it 

does not constrain density. We assume density is a piecewise linear function of 

𝜓. For  𝜓𝑖 < 𝜓 < 𝜓𝑖=1, with 𝜓𝑖 and 𝜓𝑖+1 any pair of adjacent flux surfaces, we 

write the density as

Chosen model Pre-calculated 
(from A)

Pre-calculated 
(from A)

Chosen model

Similarly, synthetic polarimetry measurements can be written as
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If we define a vector with all free parameters, such as for instance 𝑤 = 𝑘, 𝑛1, 𝑛2
𝑇, 

we compute the synthetic measurements from the equilibrium A as

𝑚 = 𝐴𝑤 ,

where 𝑚 includes as many measurements as the diagnostics included in A.

The probability of a measurement set 𝑚′ matching the synthetic set 𝑚 obtained 

through A is 

𝑃 𝑚′ 𝐴 = exp −
1

2
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,

which can be cast as 𝑃 𝑚′ 𝐴 = exp −
1

2
𝑚′ − 𝐴𝑤 𝑇𝐶−1(𝑚′ − 𝐴𝑤) .

Solving for the vector 𝑤∗ that minimizes the error one finds   

𝑤∗ = 𝐴𝑇𝐶−1𝐴 −1𝐴𝑇𝐶−1𝑚′.

Introduction

• Sensitivity analysis estimates the accuracy and precision of the 

reconstructed values (e.g. q profile) for a given set of sensors and 

measurements

• This is used to determine several things:

 Required sensors and uncertainties to achieve target 

accuracy/precision in reconstructed values

 Optimal configuration for limited numbers of sensors

 Cost/benefit analysis of expensive diagnostics

• Testcases: synthetic measurement data generated by post-processing 

magnetic simulations (GS equilibria, VAC)

• Synthetic density measurements are calculated using the magnetic 

simulations and assumed density profiles

• Errors can be easily calculated as the true values of the reconstructed 

quantities are known

• Errors can be compared to targets or used to select optimal sensor 

configurations

Results

Limitations 

• Phenomena missing from simulation codes will not be reflected in the results.

• Sensitivity analysis uses a set of testcases, which may not be representative 

of the experimental plasmas (on Pi3, the 1000 most experimentally common 

profiles are used, while on FDP the LUT is uniformly sampled).

• Reconstruction is computationally expensive and slow. Brute force 

optimization often requires too many combinations to be feasible.

• Markov chain Monte Carlo method

 Initialize with sparse table

 Calculate steps until method converges to equilibrium

 Can get stuck in local minima for long time 

 Requires on-the-fly equilibrium calculations

• Inverse equilibrium

 Much faster

 Requires experimental determination of LCFS

• Adding presumed temperature profile 𝑻(𝝍) and neoclassical 

resistivity would allow to compute the time derivatives of all 

synthetic probes

 This doubles the measurements information we are leveraging

 Using Bayesian inference, we can then calculate the probabilities 

of the various temperature profiles

 Confine equilibrium selection. .  Some lambda profiles might fit the 

measured probe values, but not be able to produce the measured 

slopes with a physically realistic temperature profile.
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• General Fusion (GF) aims at building a magnetized target fusion power plant 

based on compression of a magnetically-confined plasma by liquid metal. 

• Pi3 is a coaxial magnetized Marshall gun which forms a spherical tokamak 

plasma configuration through fast coaxial helicity injection (CHI).

• Plasma heating is accomplished through Ohmic decay of the confining 

magnetic field. No additional heating or current drive systems are needed.

• Pi3 will determine if the stability and confinement of the plasma are suitable 

for compression to fusion conditions by a fast implosion of a liquid lithium flux 

conserver cavity (no plasma compression in Pi3).

• Plasma reconstruction for Pi3 allows to investigate the time evolution of the 

main plasma parameters such as the safety factor, 𝑞, and it is, thus, crucial 

for the study of MHD stability 

Helicity time constraint
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in order to calculate the synthetic interferometric 

measurement along a chord of length 𝐿𝑚


