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ABSTRACT 
 

Magnetized target fusion (MTF) relies on rapidly 

compressing magnetized plasma within a flux conserver to attain 

fusion conditions. Maintaining the smoothness and symmetry of 

the plasma-facing surface during compression is crucial, as any 

asymmetric deformation or buckling of the solid metal shell can 

disrupt magnetic confinement, reducing plasma temperature, 

and lifetime. 

To establish the criteria for preventing buckling in solid ring 

implosions, we assess the effectiveness of the dynamic plastic 

flow buckling model. This assessment involves analyzing 

buckling phenomena in magnetically driven, imploding lithium 

rings. This investigation includes a total of 5 experiments with 

variations in collapse velocities, radius-to-thickness ratios, and 

initial ring temperatures. We capture and analyze the collapse 

trajectories and deformations of the rings during implosion 

using computer vision techniques. To establish material 

properties required for the theory, we utilize the Johnson-Cook 

model for the lithium ring with strain and strain rate extracted 

from the experiments. Using the extracted material properties 

and ring dimensions and employing the analytical model, we 

predict critical buckling velocities and dominant modes for each 

experimental scenario. 

We observe qualitative agreement between the experiment 

and analytical model within measurement uncertainty, 

indicating the potential to define design, manufacturing, and 

quality requirements for larger-scale Magnetized Target Fusion 

experiments using solid shells to achieve fusion conditions. 
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NOMENCLATURE 
 

A Johnson-Cook initial Yield stress coefficient 

B Johnson-Cook strain hardening stress coefficient 

C Johnson-Cook rate hardening coefficient 

Eh  strain-hardening modulus/ tangent modulus 

Fn  buckling displacement FFT coefficient  

I ring element moment of inertia per unit length 

M bending moment 

N thrust force 

Q shear force 

T Temperature 

𝑇𝑚𝑒𝑙𝑡    Johnson-Cook melting temperature 

𝑇𝑟𝑒𝑓 Johnson-Cook reference temperature 

 

h ring thickness 

ℎ0 ring initial thickness 

m Johnson-Cook thermal softening power coefficient  

𝑛́ Johnson-Cook strain hardening power coefficient 

n mode number 

p normal force per unit length 

r instantaneous radial location of the mid-surface of the 

shell element 

𝑟0 initial radius of the mid-surface of the shell element  

t time  

w(θ,t) radially inward perturbation growth that arise during 

collapse 

wi(θ) initial perturbation of shell cross section from the 

circular form 

𝜀 ̇ Johnson-Cook reference strain rate 

𝜀𝑝 plastic strain 

𝜀𝑒 equivalent plane strain 

𝜀𝑟  radial strain 

𝜀𝜃  tangential strain 

κ curvature 

𝑑𝜆 arc length corresponding to 𝑑𝜃 

𝑑𝜑 subtended angle of 𝑑𝜃 at instantaneous center of 

curvature  

𝑑𝜃  angle corresponding to the moving element of the ring 

𝜌  density 

σ̅  average plastic flow stress  
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1. INTRODUCTION 
 

Magnetized Target Fusion (MTF) is a technology that aims 

at reducing the cost to achieve fusion conditions for energy 

generation [1].  Among the different sub-technologies of MTF, 

the ones that rely on a magnetized plasma being compressed by 

a magnetic flux conserver are of particular interest because they 

rely on already available technologies. General Fusion Inc. aims 

to achieve nuclear fusion conditions by compressing a toroidal 

magnetized plasma through the implosion of a cylindrical solid 

lithium shell [2]. One of the main prerequisites for the successful 

implementation of this concept is the maintenance of 

magnetohydrodynamic (MHD) stability in the plasma 

throughout the compression process. One of the factors affecting 

the MHD stability is the evolution of flux-conserver geometry 

throughout the implosion [3]. Asymmetric deformation or 

buckling of the plasma-facing surfaces disrupts plasma magnetic 

confinement, reduces plasma temperature and plasma lifetime. 

Accordingly, studying circular cross-section shell implosions is 

essential to finding out the requirements to minimize dynamic 

instabilities and buckling in the plasma-facing surfaces. 

High-speed collapse of shells with circular cross section has 

been investigated in literature for various applications. These 

applications include strain-rate dependent material properties 

identification experiments, explosive magnetic flux compression 

generators, and rapid gas-tight closing of pipes [4-5]. In all these 

devices, performance is optimized whenever buckling is absent 

during the collapse motion. Lindberg and Florence [6] has done 

an extensive analysis and experimentation in dynamic pulse 

buckling. They showed under long duration loads, buckling is 

elastic. It was demonstrated that under impulsive or nearly 

impulsive loads, the threshold for buckling can exhibit either 

elastic or plastic behavior, depending on the ratio of radius to 

thickness and the material model of the ring or shell [6]. 

Timoshenko developed the equations for elastic buckling of thin 

circular rings which is subjected to uniform radial pressure [7]. 

This analysis provides a connection between the applied external 

pressure and the specific buckling mode that appears on the ring 

shape. Based on the definitions provided in [6], the experiments 

conducted in this study are considered to involve thick rings, 

with buckling determined to be plastic.  

The dynamic plastic buckling model for an imploding ring 

element was formulated considering various simplifying 

approximations through different research work [5-6,8-10]. The 

theory was derived based on the equation of motion for a uniform 

imploding ring element perturbed by either nonuniformity in the 

initial ring geometry or the radial imploding velocity. The theory 

predicts the growth of the buckles relative to the initial 

perturbation and identifies the most amplified buckling mode. 

According to the theory, it is possible to determine a critical 

velocity at which the amplification factor of the initial 

perturbations is less than a specific value [6]. 

In this work, our objective is to develop an analytical tool 

based on the theory on biaxial dynamic plastic flow buckling of 

rings during a radial impulse to guide our experimentation in 

electromagnetic-driven imploding lithium rings. The theoretical 

models are quite useful in informing the early-stage designs and 

at some points might be adequate for the final designs if the 

requirement of the theory is met. In contrast to higher fidelity 

numerical simulations, the analytical tool offers the advantage of 

significantly reduced computational costs, quicker calculations, 

and suitability for iterative design processes. 

In Section 2 of this paper, the analytical modeling for 

lithium rings, based on the work of Lindberg and Florence [6], is 

explained. Section 3 describes the experimental apparatus. In 

Section 4, the theoretical analysis based on the material and 

geometrical properties for each experiment was presented. In this 

section, the experimental results are also summarized and 

compared against analytical results. The paper is concluded in 

the final section. 

 
2. ANALYTICAL MODEL 

 
As a perfectly circular ring is imploded using a perfect 

uniform velocity, the ring flows into a uniform cylindrical shell 

of smaller radius and thicker walls. In case of any perturbation 

either in geometry, material properties, and loading, a small part 

of the ring lags the rest of the ring. The compressive hoop stress, 

that develops during inward motion, amplifies the perturbation 

growth. For a perfectly plastic material, the steady increase of 

circumferential compressive strain at all points of the wall 

thickness implies an unchanging plastic flow stress. 

Accordingly, there is no bending moment to withstand the 

buckling and the converging motion would be unstable. 

However, for a viscoplastic material, the rate of circumferential 

strain is different at each side of the shell because of the 

difference in the amount of curvature. As shown in Fig. 1, the 

amount of strain growth in convex side of the perturbed shell 

element (point A) is smaller relative to the equivalent point on 

the concave side of the shell (point B). Accordingly, due to the 

difference between the circumferential stresses at points A and 

B, a bending moment will act on the section AB of the shell that 

resists buckling. As the collapse proceeds, the ring becomes 

thicker. Both the thrust stimulating buckling and the bending 

moment resisting buckling increases. However, the thrust is a 

function of thickness, but the bending moment is a function of 

thickness cubed. Accordingly, the ring stability improves. This 

means that the modes that are unstable at the beginning of the 

collapse can become stable as the collapse advances. Moreover, 

since the growth of the perturbations requires time, at high 

collapse velocities, the buckle sizes can stay within acceptable 

values [5-6]. The analytical calculations presented here are based 

on the theories developed by Lindberg and Florence [6] of plastic 

buckling of rings under dynamic radial loading. In this analytical 

model, the directional contribution to the restoring moment is 

neglected. In addition, the collapse velocity is considered 

constant which is another way to say that only a small amount of 

initial kinetic energy is absorbed by plastic work. The last 

assumption is that the deviation from circular form of the ring 

does not cause strain rate reversal throughout the motion. 
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a)  b)  
 
FIGURE 1. a) Growth of nonuniformity under hoop 

stress in contacting motion, b) Constant strain-hardening 
stress-strain relationship in a collapsing ring [6] 

 
The equation of motion for a collapsing ring element can be 

derived using an element which is shown in Fig. 2. By neglecting 

rotary inertia, and by taking moments about any point on the 

element, per unit axial length we have: 

 

Q =
∂M

∂λ
     (1) 

 

The equation of motion for the radial motion of the collapsing 

shell is derived by summing up all radial forces. After 

simplifying, we get: 

 

        
∂Q

∂λ
+ N

∂φ

∂λ
− p = ρh

∂2(r−w)

∂t2    (2) 

 

Considering the total inward displacement from a circle of radius 

r(t) is w(t, θ) + wi(θ), the instantaneous curvature of the 

element is: 

 

κ =
1

r(t)
+

w(t,θ)+
𝜕2w(t,θ)

𝜕θ2 +wi(θ)+
∂2wi(θ)

𝜕θ2

r2       (3) 

 

Considering 𝜅 = 𝜕𝜑 𝜕𝜆⁄ , and given the relatively small values 

of both w and 𝑤𝑖 relative to r(t), which leads to 𝑑𝜆~𝑟𝑑𝜃, and 

𝑁 𝑟⁄ = 𝜌ℎ 𝜕2𝑟 𝜕𝑡2⁄ + 𝑝, Eqn. (2) can be reformulated as: 

 
1

r2

∂2M

∂θ2 +
N

r2 (w(t, θ) +
∂2w(t,θ)

∂θ2 + wi(θ) +
∂2wi(θ)

𝜕θ2 ) = −ρh
∂2w

∂t2     (4) 

 
Solution of Eqn. (4) requires the values for restoring moment, M, 

and thrust force, N. In the absence of strain-rate reversal across 

a cross-section of the shell, the moment can be approximated 

based on pure elastic motion. The key distinction involves 

substituting the elastic modulus, E, with tangent modulus, Eh: 

 

M = EhI(κ − κi)    (5) 
 

Which for a unit length of the shell, I = h3 12⁄ . The thrust force 

for the element, would be the hoop stress times the area which 

is: 

 

N = σ̅h     (6) 

 
FIGURE 2. Element of a ring in collapsing motion [6] 

 

If we represent the buckling displacement and initial geometrical 

perturbation from circularity as: 

 

w(θ, t) = r0 ∑ [Fn(t) cos nθ + Gn(t) sin nθ ]∞
n=2  (7) 

wi(θ)  = r0 ∑ [An cos nθ + Bn sin nθ ]∞
n=2   (8) 

 

Equation (4) becomes: 

 

ρ
∂2fn

∂t2 + fn(n2 − 1) (
Ehh2n2

12r4 −
σ̅

r2) −
σ̅

r2
(n2 − 1) = 0 (9) 

 
In the above equation, fn = Fn(t) An⁄  is the amplification 

function. As long as the coefficient of fn in Eqn. (9) remains 

positive, there won't be significant amplification in the growth of 

the amplification function. That means as long as 

 

n > √
12r2σ̅

Ehh2        (10) 

 

the collapse will remain stable. An additional insight from this 

equation is that the stability limit on the buckling mode number 

is proportional to radius and inversely proportional to thickness. 

Accordingly, as the radial inward motion progresses, the modes 

that may be initially unstable will eventually become stable. 

For solving Eqn. (9), it is required to consider a material model 

for the lithium rings. The mechanical properties for the lithium 

ring that were used in analytical modeling and experiment is 

summarized in Tab. 1. For the lithium ring, a Johnson-Cook 

material model, Eqn. (11), was used to capture the flow stress 

dependence on strain hardening, strain-rate hardening and 

thermal softening:  

 

𝜎 = [𝐴 + 𝐵(𝜀𝑝)
𝑛́

] [1 + 𝐶𝑙𝑛 (
𝜀̇

𝜀0̇
)] [1 − 𝑇∗ 𝑚]         (11) 

 

The definition of each material constant and other properties 

used in the study can be found in Tab. 1. The parameter 𝑇∗ is the 
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homologous temperature (𝑇∗=(𝑇 − 𝑇𝑟𝑒𝑓)/(𝑇𝑚𝑒𝑙𝑡 − 𝑇𝑟𝑒𝑓)). 

Further details on these parameters can be found in Miao Y. [11].  

Using the material model and for each experiment, Eqn. (9) was 

solved numerically using Runge-Kutta method. The 

experimental and analytical results are discussed in the next 

section. 

 

TABLE 1. Recycled lithium mechanical properties 

Density, 𝝆 (kg/m3) 530 

Elastic Modulus, 𝑬 (GPa) 7.82 

Poisson Ratio 0.48 

Initial Yield, 𝑨 (MPa) 0.744 

Hardening Constant, 𝑩 (MPa) 19.8 

Hardening Exponent, 𝒏 0.3 

Reference Strain Rate, 𝜀0̇ 0.002 

Strain Rate Constant, 𝑪 0.0141 

Thermal Softening Exponent, m 0.77 

Melting Temperature, 𝑇𝑚𝑒𝑙𝑡  (°C) 180 

Reference Temperature, 𝑇𝑟𝑒𝑓(°C) 21 

 

 

3. EXPERIMENTAL APPARATUS 
 
The objective of the experiment is to study and characterize 

the buckling behavior of a lithium ring in response to the 

magnetically induced dynamic compressive loading. A solid 

lithium ring is placed inside a custom-made aluminum solenoid 

connected to high-voltage power supply as shown in Fig. 3. 

Electromagnetic compression is achieved by applying a high-

voltage capacitor discharge into the solenoid, creating an 

electromagnetic field that induces an impulsive force in the ring. 

High speed cameras (Photron FASTCAM Nova S12), at a frame 

rate of 22500 frames per second (FPS), were used to track the 

implosion and buckling behavior of the lithium ring. The high-

speed camera footage was processed to extract the liner position 

and demonstrate the liner buckling behavior throughout the 

compression process. The images recorded provide a basis for 

the experimental observations and measurements, from which 

theories will be compared. Further details on the experimental 

apparatus parameters can be found in Dick et al. [2]. 

 

4. RESULTS AND DISCUSSION 
 
In this section we describe and analyze the two sets of 

dynamic buckling experiments that have been conducted using 

recycled lithium rings. The dynamic loading for the collapse of 

the rings is created via electromagnetic induction following a 

rapid discharge of charge stored in capacitors. The solenoid is 

designed with a sliding fit tolerance for the rings in a way that 

the internal diameter of the solenoid equals the external diameter 

of the ring plus 6mm. The typical ring specimen has an external 

diameter of 527 mm.  

  
(a) 

 

 
(b) 

 

FIGURE 3. Experimental setup for lithium ring implosion 
showing a) electromagnetic coil and b) lithium ring 
 

The rings thickness, height, temperature, and collapse 

velocity are shown in Tab. 2. Radius over thickness ratio for set 

A and set B of the experiment is roughly equal to 10 and 45, 

respectively. 

 

 

TABLE 2. Summary of the experiments’ conditions 

 

 

Figure 4.a displays the top and side views of set A rings for 

each experiment after the collapse, and Fig. 4.b shows a snapshot 

of the set B experiment during the collapse. Set B experiments 

shattered into pieces at the end of the implosion, leaving nothing 

for preview after the collapse. 

 

Shot 

No. 

Shot Conditions 
Nominal 

OD 
(mm) 

Ring 

Thickness 
 (mm) 

Height 

(mm) 
 

Temperature 

(C) 

Approximate 

Collapse 
Velocity 

(m/s) 

1A 527 25.0 55.0 25 ~91 

2A 527 25.2 53.4 40 ~192 

3A 527 24.5 53.0 100 ~213 

1B 527 5.7 55.4 25 ~332 

2B 527 5.5 27 25 ~620 
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(a) 

 
(b) 

FIGURE 4. a) Top and side views of set A rings 
experiment, and b) Top view of set B rings during 
implosion 

 

Figure 5 shows the trajectory of the mid-surfaces of the rings 

for set A and B experiments, respectively. A constant collapse 

velocity was extracted by fitting a line to these graphs. An upper 

limit of ∓5mm uncertainty was present in extracting the edges 

using image processing techniques. 

 

 
FIGURE 5. Experimental trajectories for rings collapse 

Figure 6.a and b show the polar plot of the growth of the 

buckles on the inner edge of the rings during implosion in 

shot#1A and shot#1B, respectively. The amplification of the 

wrinkles can be followed in these set of plots. Based on the 

camera’s FPS, the time difference between each consecutive 

graph is 44µs. According to Fig. 6 The number of crests in 

Shot#1A and Shot#1B are roughly ~8, and ~30, respectively. 

 

 
 

(a) 
 

 
(b) 

 
FIGURE 6. a) shot#1A, and b) shot#1B wrinkles growth 
evolution through time. 
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To solve Eqn. (9) for the performed experiments, it is necessary 

to input plastic stress (σ̅) and strain hardening (𝐸ℎ) into this 

equation. To achieve this, for each experiment, the strain and 

strain rate was extracted from the experimental liner trajectories. 

The equivalent plane strain is calculated based on Eqn. (12). 

 

𝜀𝑒 =
1

1+ʋ
√𝜀𝑟

2 − 𝜀𝑟𝜀𝜃 + 𝜖𝜃
2   (12) 

 

where 𝜀𝑟 =
ℎ0−ℎ

ℎ0
 and 𝜀𝜃 =

𝑟0−𝑟

𝑟0
 are radial and circumferential 

strain, respectively. The temperature is also determined based on 

the initial temperature of the ring in each experiment. These 

values were then implemented into the Johnson-Cook model, 

and the values of σ̅ and 𝐸ℎ were derived. Fig. 7 displays these 

values throughout the experiment. The data was magnified for 

the mid-range of the collapse where the collapse velocity is 

constant. As the ring temperature increases, strain hardening and 

flow stress decreases. Moreover, the strain-hardening value is 

almost constant throughout compression. 

 

 
(a) 

 
(b) 

 

FIGURE 7. a) plastic flow stress, and b) strain hardening 
for set A of the experiments. 

The solution to Eqn. (9) strongly depends on strain hardening, 

average flow stress, ring initial radius, and ring initial thickness. 

Equation 9 was solved using the average extracted values of σ̅ 

and 𝐸ℎ for material and geometrical properties of shot #1A at 

different velocities and for the first 20 mode numbers. Figure 8 

depicts the amplification factor versus velocity, extracted at the 

point where the growth type for that specific mode number, 

transitions from unstable to stable, i.e., when the coefficient of 

fn in Eqn. (9) becomes positive. As evident from the Fig. 8, an 

increase in the collapse velocity significantly decreases the 

amplification factor. In this figure, the topmost graph in the 

group of diagrams corresponds to the dominant mode number. 

Figure 9 illustrates the amplification factor versus mode numbers 

across a range of velocities, extracted based on the material and 

geometrical properties of shot #1A. The dominant mode number 

at all the velocities is observed to be 9 and counting the crests on 

Fig. 6.a for shot #1A results in approximately the same value. 

The theory can provide a rough prediction for both the dominant 

mode number and the velocity required to keep the amplification 

factor below a desired specific limit. 

The same procedure was repeated for set B of the experiments. 

Due to the higher radius-to-thickness ratio in set B, the dominant 

mode shows higher values, as evident in the corresponding 

experimental results illustrated in Fig. 6.b. Figure 10 and 11 

shows the amplification factor vs velocity, and amplification 

factor vs. mode number for Shot #2B, respectively. By 

comparing the approximate number of crests in Fig. 6.b, it can 

be observed that the theory predicts the dominant mode number 

with sufficient proximity to the experimental values. 

 

 
FIGURE 8. Amplification factor vs. velocity solved for 
material and geometrical properties of Shot#1A  
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FIGURE 9. Amplification factor vs. mode number solved 
for material and geometrical properties of Shot#1A  
 

 
FIGURE 10. Amplification factor vs. Velocity solved for 
material and geometrical properties of Shot#1B  

  
FIGURE 11. Amplification factor vs. mode number solved 
for material and geometrical properties of Shot#1B  
 

 

A precise comparison between the experiment and theory is 

challenging because the nonuniformities in the experimental 

velocity distributions and initial geometrical perturbation, which 

are necessary for the theory, are unknown. Instead, the study 

compares the observed number of crests which is interpreted as 

dominant mode numbers, with a theoretical limit which is 

dependent on the dimensions and material properties of the ring. 

The dominant mode number is unaffected by the geometrical and 

velocity nonuniformities. However, the absolute maximum 

imperfection growth which is seen in experiment is the product 

of initial imperfection of each mode times its amplification 

factor. Accordingly qualitative comparisons of experimental and 

theoretical mode numbers are done. Table 3 summarizes and 

compares the results from the analytical solution and 

experimental observations for all the experiments. From this 

table, it can be readily concluded that an increase in temperature, 

leading to the softening of the material, decreases the 

amplification factor and improves dynamic stability. In addition, 

increasing the collapse velocity improves stability. The 

mechanism by which increasing velocity helps stabilize the 

collapse is that wrinkles do not have enough time to grow within 

the implosion time. 

 

 

 Experimental 

Dominant Mode 

Number 

Analytical 

Dominant Mode 

Number 

Maximum Analytical 

Amplification Factor at the 

Experimental Velocity 

Strain Hardening 

(𝐸ℎ) 

[Pa] 

Plastic flow 

stress (σ̅) 

[Pa] 

Mid Radius-to-

Thickness Ratio 

1A 

~8 to ~10 

7 to 8 75 to 1500 2.20e7 9e6 to 15e6 9.8 

2A 7 to 10 6 to 40 1.90e7 8e6 to 15e6 9.9 

3A 9 to 11 5 to 15 0.96e7 5e6 to 8e6 10.3 

1B ~ 30 30 to 44 125 to 80000 2.20e7 8e6 to 18e6 45.3 

2B ~ 44 42 to 52 200 to 8000 2.25e7 16e6 to 27e6 45.6 

TABLE 3. Summary of the experimental and analytical results 
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5. CONCLUSION 
In this study, we conducted analytical modeling to explore the 

plastic dynamic pulse buckling of viscoplastic rings subjected to 

the radial force induced by a poloidal magnetic field. Two sets of 

experiments were carried out with radius-to-thickness ratios of 

approximately 10 and 45. Throughout these experiments, we 

varied the implosion velocity and rings initial temperature, 

investigating their impact on the dominant mode number of 

buckling and the amplification of the buckles. By comparing 

experimental results with analytical modeling, we concluded that 

the theory is reliable in predicting the limit of the dominant mode 

number. Furthermore, the theory can anticipate critical velocities 

where the amplification factor of the buckles is below a specific 

threshold. This fulfills our goal of establishing an analytical tool 

for estimating the dominant mode number and the necessary 

velocity to minimize buckle growth during the implosion. 

Accordingly, the analytical tool has the potential to define 

design, manufacturing, and quality requirements for larger-scale 

Magnetized Target Fusion experiments. 
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