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Lawson Machine 26 (LM26) is a magnetized target fusion (MTF) demonstration
machine with the goal of producing significant plasma heating via compression.

Operation

1. The toroidal plasma is generated by coaxial helicity injection (CHI).

2. Plasma confined inside a solid lithium liner, with an aluminum shaft.

3. Liner inductively compressed in less than 3 milliseconds.

4. The plasma will heat if the energy confinement time is longer than the
compression time.

maintain confinement.

5. Plasma must remain MHD stable throughout the whole compression to

Plasma Compression Experlment DeS|gn

Status

* Design of the first stage is complete.
e Simulations of the machine operation and performance are mature.
e Construction of the 18 MJ power supply is underway

* Large components of the flux conserver are being manufactured.

* PI3 CHI injector is being disassembled to be reconfigured as LM26.
e First plasma is scheduled for Q1 2025.
Goal is to reach 10 keV by 2025.

QR code for video of LM26 Concept
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COMSOL MODEL VALIDATION WITH EXPERIMENT

Steps for Model Implementation

1. Lithium material characterization

2. Validate with lithium ring compression
experiments

3. Validate lithium cylinder compression
on cones

4. Trajectory prediction in full-scale LM26

PO Compression Tests
Lithium cylinder machined
in argon -filled vessel
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INTRODUCTION TO LM26 OPENFOAM MHD MODEL VALIDATION MHD STABILITY DURING COMPRESSION REQUIREMENTS FOR PLASMA STABILITY ERROR FIELD PENETRATION

The OpenFOAM MHD solver developed at General Fusion [V Suponitsky et al.
Fluids 2022, 7(7), 210] was extended to simulate EM compression of the liner
driven by the external circuit and diffusion of the magnetic fields into multiple
solid materials. Solid lithium is modelled as a high viscosity liquid (creeping
flow). This approach is robust at capturing the dynamics of the liner in the
regimes of interest when compared to the experimental results and
COMSOL modeling.

The solver is used to simulate: (1) small ring compressor, (2) PO experiments with
emphasis on toroidal flux trapping and flux diffusion into the cones, and (3)
compression of a simplified magnetized plasma in LM26, which involves
interaction between plasma magnetic fields, buffer fields, and driving fields. A
single-temperature plasma model is also implemented and can be further
extended in the future.

LM26 plasma compression simulations with 0% and 30% buffer flux
Contours show poloidal flux and high resistivity regions are marked in red.
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* Plasma region bounded by LCFS, with high resistivity (red) outside

» Buffer field controls shape of the plasma and diffusion into liner and cones

e With buffer flux plasma is limited on the cones. Choice of materials plays
an important role in reducing flux diffusion.

Comparison between MHD-OpenFOAM solver and layered VAC

* Liner trajectory and poloidal and toroidal fields at inner and outer
liner surfaces, and inner surface of the cones extracted from
OpenFOAM and provided as inputs to VAC MHD sim. Resistivity of the
plasma was kept constant in both OpenFOAM and VAC.

* Initial plasma parameters: peaked lambda profile, uniform pressure
profile, I .. = 1.5 MA, ;45 = 0.157 Wb
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Initial flux surfaces and equatorial profile of poloidal flux for compression
and stationary simulations without buffer flux
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Time evolution of poloidal flux at axis (¥,,4x), LCFS (W, crs), and closed flux
(Wenc) for stationary (non-compressing) and compression cases.

The plasma will heat to fusion conditions only if compressional heating is greater
than transport losses, i.e., if the energy confinement time is longer than the
compression time. To maintain sufficient energy confinement time, the plasma
must be kept MHD stable. Using the liner geometries predicted with COMSOL
and OpenFOAM, we model the plasma evolution with CORSICA by conserving the
safety factor (q) and specific entropy profiles. Then we evaluate the ideal and
resistive MHD stability using RDCON [A Glasser et al. 2016 Phys. Plasmas 23
112506]. With this technique, we have previously calculated MHD stable
trajectories in a simplified compression geometry [D Brennan et al. 2020 Nucl.
Fusion 60, 046027; D Brennan et al. 2021 Nucl. Fusion 61, 046047].

COMSOL Model Case CSIM-029
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* We introduce the same plasma in both trajectories, with only the geometry and
poloidal flux boundary conditions taken from COMSOL and OpenFOAM.

e Case CSIM-029 has small (~4 mWb) flux diffusion through liner from drive coils.

e Case OFSIM-0025 uses an isothermal MHD plasma and models flux diffusion
from the plasma into the flux conserver.

* Despite these differences, the liner trajectories and poloidal flux boundary
conditions are very similar until late compression ( > V/V,=53).

Stability Map for COMSOL geometry  Stability Map for OpenFOAM geometry
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* We assume that the plasma can tolerate perturbation growth of 10 times before
final compression and use that as a threshold to find stable corridors.
* Under this criterion, both COMSOL and OpenFOAM trajectories agree that
plasmas remain stable until full compression when q,,,=2.3-2.7 ( line).
Flux and g conservation cause a peaked edge current as geometry changes.
Edge q decreases in OpenFOAM model because flux surfaces diffuse into shaft.
Self-consistently modeling the plasma and liner, as with MHD-OpenFOAM,
improves accuracy, but is not necessary to establish requirements on plasma.
Resistive stability is sensitive to the edge current, which opens compression
corridors stable to n=1 and n=2 [D.Brennan et al, Nucl. Fus. 61, 046047 (2021)].

MHD stability can usually be achieved by increasing shaft current and, hence,
the toroidal field and safety factor q. However, generating shaft current requires
large, expensive capacitors. We want to know the minimum necessary shaft
current that will maintain stability through to the end of the compression
trajectory. For a single COMSOL compression trajectory (CSIM-029), we scan
plasma parameters and find a wide range under which the plasma remains
stable with less than 1.5 MA initial shaft current, the amount under
construction.

Minimum stable initial shaft current vs Poloidal Flux and Temperature
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Minimum stable initial shaft current vs Density and Temperature
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Minimum stable initial shaft current vs Poloidal Beta and Rotation
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Minimum stable initial shaft current vs Plasma Profiles
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* The optimum (where the lowest initial shaft current is required) has lambda
centroid 0.38 and a temperature profile with maximum gradient at {=0.6.

e The profiles at this minimum are

A=X(1-9%) T@)=T(1-¢"’

which are a peaked lambda profile and a broadish pressure profile.

* Extensive ideal MHD stability scans with RDCON were used to find highly
stable geometric and plasma parameters, which are easily achievable using
the hardware under construction.

Geometric perturbations in the liner surface will grow during compression and
be experienced by the plasma as increasing magnetic perturbations, or error
fields. Error field penetration (EFP) is an important problem in the stable regions
and can drive resonant perturbations in the plasma.
* We take a two-pronged approach:
o Reduced model of Cole and Fitzpatrick [A Cole, R Fitzpatrick 2006 Phys.
Plasmas 13 032503] applied to equilibria
o NIMROD simulations with RMP boundary imposed
* The goal is to characterize the penetration thresholds and find the conditions
(e.g. resistivity, viscosity, rotation, etc.) that shield the highest error fields.
* We analyze in a static equilibrium geometry, which is justified because the
compression time is much longer than Alfven time and RMP ramp time.
* Resonant magnetic perturbation (RMP) of 2/1 mode imposed on Br at
boundary drives a wider spectrum in plasma response.
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Poincare plot of flux surfaces before
and after error field penetration

* Prior to penetration, initial islands can propagate, as described by Fitzpatrick
model [PoP 21, 092513 (2014)] and observed by Howell [NIMROD Mtg 5/23].

* Penetration point is deduced where the island width rapidly grows past the
layer width, such as at t=0.2 ms in Br phase plot above.
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* NIMROD simulations are based on equilibria taken from a compression
sequence. In addition to constraints on entropy and q, the toroidal flow Q

increases by angular momentum conservation.

» Aspect ratio, shaping, and Q affect the plasma response spectrum (ratio of 2/1
inside), but fixing Lundquist number (S) isolates those effects.

* EFP limits from NIMROD start at O(10-3) and decrease with modestly with C and
S, unlike analytic model [Cole & Fitzpatrick, Phys. Plas. 13, 032503 (2006)]
where high S cases have lower limits and effect of C is non-monotonic.

* NIMROD results at lower Lundquist number S =5 x 10° are not fully in the
asymptotic regime and deviate significantly from analytic model.

* Increases in S and Q are most impactful on penetration thresholds.
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PoP 22, 120701 (2015)
Limits increase with viscosity and/or rotation, as expected

Q (103 rad/s) atC=3 Kinematic Viscosity (m?/s)

Increasing rotation Q shifts the Nvé curve up and to the right with fixed slope.

* Increasing viscosity increases the slope of the Nv¢ line.

Both lead to a higher point where the Nm¢ curve slips into a locked state.

This gives some confidence that the NIMROD and Finn, Cole, Brennan [PoP 22,
120701 (2015) ] results are scaling correctly.

Future Error Field Penetration Work
* Understand discrepancies between NIMROD and Cole 2006 analytic model.

Penetration limits ~1e-3 pre-compression decrease to ~1e-4 as S increases.
* How important are experimentally observed rotation shears?
* How important is the shaping and stability to the EFP limits?

* Are two fluid effects important?

Kinetic ions interactions and kinetic layer regimes all open questions

Flux soak into wall affects the equilibrium and EFP limits and will be included

Instability interaction with the liquid wall also being investigated
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